scholarly journals Effect of peat mire evolution on pore structure characteristics in thick coal seam: Examples from Xishanyao Formation (Middle Jurassic), Yili Basin, China

2020 ◽  
Vol 38 (5) ◽  
pp. 1484-1514 ◽  
Author(s):  
Rongfang Qin ◽  
Anmin Wang ◽  
Daiyong Cao ◽  
Yingchun Wei ◽  
Liqi Ding ◽  
...  

The physical properties of thick coal seams show strong vertical heterogeneity; thus, an accurate characterization of their pore structure is essential for coalbed methane (CBM) exploration and production. A total of 18 coal samples, collected from a thick coal seam in the Yili Basin of NW China, were tested by a series of laboratory experiments to investigate the peat mire evolution and pore structure characteristics. The results show that the No. 4 coal seam has undergone multiple stages of evolution in the peatification stage, and was divided into four water-transgression/water-regression cycles according to the regular cyclic changes of the vitrinite/inertinite ratio, structure preservation index, gelification index, vegetation index, trace element ratios, and stable carbon isotopes of organic matter. The changes of pore structure characteristics with the changes of coal deposition cycles are also analyzed. It is concluded that pore structure characteristics of the four cycles are quite different. In each water-transgression cycle, the vitrinite gradually increased and the inertinite gradually decreased, resulting in a decrease of the porosity, pore volume, specific surface area, and fractal dimension. While in each water-regression cycle, the vitrinite gradually decreased and the inertinite gradually increased, leading to an increase of the porosity, pore volume, specific surface area, and fractal dimension. A strong relationship exists between the porosity, pore volume, specific surface area, fractal dimension, and submacerals, with fusinite and semifusinite which contained more pores having a positive correlation, desmocollinite and corpovitrinite which contained few pores having a negative correlation.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhihui Wen ◽  
Qi Wang ◽  
Yunpeng Yang ◽  
Leilei Si

In this study, the full-size pore structure characteristics of six different-rank coal samples were investigated and analyzed from three perspectives, namely, pore shape, pore volume, and pore specific surface area, by performing a high-pressure mercury injection experiment and a low-temperature nitrogen adsorption experiment. Next, the full-size pore volumes and pore specific surface areas of the six coal samples were accurately characterized through a combination of the two experiments. Furthermore, the relationships between volatile matter content and pore volume and between volatile matter content and pore specific surface area were fitted and analyzed. Finally, the influences of metamorphic degree on pore structure were discussed. The following conclusions were obtained. The pore shapes of different-rank coal samples differ significantly. With the increase of metamorphic degree, the full-size pore volume and pore specific surface area both decrease first and then increase. Among the pores with various sizes, micropores are the largest contributor to the full-size pore volume and pore specific surface area. The fitting curves between volatile matter content and pore volume and between volatile matter content and pore specific surface area can well reflect the influence and control of metamorphic degree on pore volume and pore specific surface area, respectively. With the increase of volatile matter content, the pore volume and the pore specific surface area both vary in a trend resembling a reverse parabola.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2019 ◽  
Vol 7 (2) ◽  
pp. T547-T563 ◽  
Author(s):  
Jiyuan Wang ◽  
Shaobin Guo

To systematically study the whole-aperture pore-structure characteristics of the marine-continental transitional shale facies in the Upper Palaeozoic Taiyuan and Shanxi Formations of the Qinshui Basin, we have collected a total of 11 samples for high-pressure mercury intrusion, low-pressure gas adsorption ([Formula: see text] and [Formula: see text]), nuclear magnetic resonance (NMR), and field-emission scanning electron microscopy with argon-ion polishing experiments to determine the pore morphology and distribution characteristics of shale samples in detail and to perform quantitative analyses. Then compared the pore-development characteristics of the Taiyuan Formation samples with those of the Shanxi Formation to determine which is preferable. The experimental results indicate that the shale samples of the Qinshui Basin mainly develop three types of pores: organic pores, intergranular pores, and microfractures. High-pressure mercury intrusion and gas-adsorption experiments indicate that the pore-size distributions exhibit multiple peaks. The samples contained varying proportions of macropores, mesopores, and micropores, among which the former two are dominant, accounting for approximately 85% of the total pore volume, whereas micropores account for only 15%. However, mesopores and micropores dominate the specific surface area; between them, the micropores are much more prevalent, accounting for more than 99% of the total specific surface area. Macropores contribute less than 1% of the specific surface area and therefore can be neglected. The pore morphology resembles the slit type parallel platy pores with a ballpoint pen structure. The NMR [Formula: see text] spectra have multiple-peak values. In addition, the large difference between the curved areas before and after centrifugation indicates that the samples contain a large proportion of mesopores and macropores, which is consistent with the results presented above. The results demonstrate that the development of pores in the Taiyuan Formation is better than that in the Shanxi Formation.


2021 ◽  
Vol 21 (1) ◽  
pp. 682-692
Author(s):  
Youzhi Wang ◽  
Cui Mao

The pore structure characteristic is an important index to measure and evaluate the storage capacity and fracturing coal reservoir. The coal of Baliancheng coalfield in Hunchun Basin was selected for experiments including low temperature nitrogen adsorption method, Argon Ion milling Scanning Electron Microscopy (Ar-SEM), Nuclear Magnetic Resonance (NMR), X-ray diffraction method, quantitative mineral clay analysis method. The pore structure of coal was quantitatively characterized by means of fractal theory. Meanwhile, the influences of pores fractal dimension were discussed with experiment data. The results show that the organic pores in Baliancheng coalfield are mainly plant tissue pores, interparticle pores and gas pores, and the mineral pores are corrosion pores and clay mineral pores. There are mainly slit pore and wedge-shaped pore in curve I of Low temperature nitrogen adsorption. There are ink pores in curve II with characteristics of a large specific surface area and average pore diameter. The two peaks of NMR T2 spectrum indicate that the adsorption pores are relatively developed and their connectivity is poor. The three peaks show the seepage pores and cracks well developed, which are beneficial to improve the porosity and permeability of coal reservoir. When the pore diameter is 2–100 nm, the fractal dimensions D1 and D2 obtained by nitrogen adsorption experiment. there are positive correlations between water content and specific surface area and surface fractal dimension D1, The fractal dimension D2 was positively and negatively correlated with ash content and average pore diameters respectively. The fractal dimensions DN1 and DN2 were obtained by using the NMR in the range of 0.1 μm˜10 μm. DN1 are positively correlated with specific surface area of adsorption pores. DN2 are positively correlated volume of seepage pores. The fractal dimension DM and dissolution hole fractal dimension Dc were calculated by SEM image method, respectively controlled by clay mineral and feldspar content. There is a remarkable positive correlation between D1 and DN1 and Langmuir volume of coal, so fractal dimension can effectively quantify the adsorption capacity of coal.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Weiwei Liu ◽  
Kun Zhang ◽  
Qianwen Li ◽  
Zhanhai Yu ◽  
Sihong Cheng ◽  
...  

Due to the specificity of the geological background, terrestrial strata are widely distributed in the major hydrocarbon-bearing basins in China. In addition, terrestrial shales are generally featured with high thickness, multiple layers, high TOC content, ideal organic matter types, and moderate thermal evolution, laying a solid material foundation for hydrocarbon generation. However, the quantitative characterization study on their pore structure remains inadequate. In this study, core samples were selected from the Middle Jurassic Lianggaoshan Formation in the southeastern Sichuan Basin of the Upper Yangtze Region for analyses on its TOC content and mineral composition. Besides, experiments including oil washing, the adsorption/desorption of CO2 and nitrogen, and high-pressure mercury pressure experiments were carried out. The pore structure of different petrographic types of terrestrial shales can be accurately and quantitatively characterized with these works. The following conclusions were drawn: for organic-rich mixed shales and organic-rich clay shales, the TOC content is the highest; the pore volume, which is primarily provided by macropores and specific surface area, which is provided by mesopores, was the largest, thus providing more space for shale oil and gas reservation. The pores take on a shape either close to a parallel plate slit or close to or of an ink bottle. For organic-matter-bearing shales, both the pore volume and specific surface area are the second-largest and are provided by the same sized pores with organic-rich mixed shales. Its pores take on a shape approximating either a parallel plate slit or an ink bottle. Organic-matter-bearing mixed shales have the lowest pore volume and specific surface area; its pore volume is primarily provided by macropores, and the specific surface area by mesopores and the shape of the pores are close to an ink bottle.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6074-6082
Author(s):  
Weikai Wang ◽  
Minghan Li ◽  
Jiabin Cai

In order to study the effects of a messmate heartwood extraction process on its cell wall pore structure and its drying ability, its nanopore structure was explored after via gas adsorption technology. Specifically, the messmate heartwood particles were extracted with methanol, and then the cell wall pore structure of the original and extracted samples were evaluated by N2 and CO2 sorption and pycnometer methods, respectively. Overall, compared with the original samples, the cell wall porosity, micropore volume, mesopore volume, BET specific surface area, and specific surface area of the micropores of the extracted messmate heartwoods increased by 2.55%, 0.007 cm3/g, 0.0014 cm3/g, 0.24 m2·g-1, and 21.9 m2·g-1, respectively. The cell wall pore volume measured via the gas adsorption method was smaller than the measurement from the pycnometer method. The results indicated that the presence of extractives made the messmate cell wall have a decreased pore volume and porosity, which may be one of the reasons messmate wood is difficult to dry. Messmate extractives primarily were present in the micropores of the cell wall in the range of 0.4 nm to 0.7 nm. However, gas sorption technology could not detect all the pores in the cell wall of the messmate heartwood sample.


2017 ◽  
Vol 36 (3-4) ◽  
pp. 904-918 ◽  
Author(s):  
Deyong Guo ◽  
Xiaojie Guo

In this paper, scanning electron microscopy, low-temperature N2 adsorption and CH4 isothermal adsorption experiments were performed on 11 coal samples with Ro,max between 0.98 and 3.07%. The pore structure characteristics of coals (specific surface area, total volume distribution) were studied to assess the gas adsorption capacity. The results indicate that there is significant heterogeneity on coal surface, containing numerous channel-like pores, bottle-shaped pores and wedge-shaped pores. Both Langmuir volume (VL) and Langmuir pressure (PL) show a stage change trend with the increase of coalification degree. For different coalification stages, there exist different factors influencing the VL and PL values. For low-rank coals (Ro,max < 1.1%), the increase of VL values and decrease of PL values are mainly due to the abundant primary pore and fracture within coal. For middle-rank coals (1.1% < Ro,max < 2.1%), the moisture content, vitrinite content and total pore volume are all the factors influencing VL, and the reduction of PL is mainly attributed to the decrease of moisture content and inertinite content. Meanwhile, this result is also closely related to the pore shape. For high-rank coals (Ro,max > 2.1%), VL values gradually increase and reach the maximum. When the coal has evolved into anthracite, liquid hydrocarbon within pore begins pyrolysis and gradually disappears, and a large number of macropores are converted into micropores, leading to the increase of specific surface area and total pore volume, corresponding to the increase of VL. In addition, the increase of vitrinite content within coal also contributes to the increase of VL. PL, reaches the minimum, indicating that the adsorption rate reaches the largest at the low pressure stage. The result is mainly controlled by the specific surface area and total pore volume of coal samples. This research results will provide a clearer insight into the relationship between adsorption parameters and coal rank, moisture content, maceral composition and pore structure, and it is of great significance for better assessing the gas adsorption capacity.


2012 ◽  
Vol 534 ◽  
pp. 101-105 ◽  
Author(s):  
Jing Xiao Liu ◽  
Lu Nan Bai ◽  
Fei Shi ◽  
Zhi Qiang Hu ◽  
Yan Yan Jiang ◽  
...  

In this paper, TiO2-SiO2composite aerogels were prepared via ambient pressure drying by sol-gel and sol pre-modification method. The pre-modification solution consists of hexamethyldisiloxane (HMDSO) as buffering agent, trimethylchlorosilane (TMCS) as modifier and hexane as organic solvent. The pore structure of TiO2-SiO2composite aerogels was characterized by N2adsorption-desorption method. The effects of HMDSO/TMCS volume ratio on the pore structure and properties of TiO2-SiO2composite aerogel were studied. The results indicate that the pre-modification of TiO2-SiO2composite sol by adding HMDSO/TMCS/Hexane solution could shorten the preparation period. Increasing the amount of HMDSO is favorable for obtaining TiO2-SiO2composite aerogel with higher specific surface area and pore volume. The best volume ratio of HMDSO/TMCS/composite sol for preparing mesoporous TiO2-SiO2composite aerogels were 12:6:120 and 12:12:120, with which the specific surface area and pore volume of the obtained TiO2-SiO2composite aerogel are 425.2~645.4 m2/g and 0.80~2.85 m3/g, respectively.


Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840008 ◽  
Author(s):  
JIJUN LI ◽  
ZHAO LIU ◽  
JUNQIAN LI ◽  
SHUANGFANG LU ◽  
TONGQIAN ZHANG ◽  
...  

Samples from seven major exploration wells in Biyang Depression of Henan Oilfield were compared using low-temperature nitrogen adsorption and shale oil adsorption experiments. Comprehensive analysis of pore development, oiliness and shale oil flowability was conducted by combining fractal dimension. The results show that the fractal dimension of shale in Biyang Depression of Henan Oilfield was negatively correlated with the average pore size and positively correlated with the specific surface area. Compared with the large pore, the small pore has great fractal dimension, indicating the pore structure is more complicated. Using S1 and chloroform bitumen A to evaluate the relationship between shale oiliness and pore structure, it was found that the more heterogeneous the shale pore structure, the higher the complexity and the poorer the oiliness. Clay minerals are the main carriers involved in crude oil adsorption, affecting the mobility of shale oil. When the pore complexity of shale was high, the content of micro- and mesopores was high, and the high specific surface area could enhance the adsorption and reduce the mobility of shale oil.


2012 ◽  
Vol 608-609 ◽  
pp. 383-387 ◽  
Author(s):  
Ji Yi Luan ◽  
Xue Mei Wu ◽  
Gui Fu Wu ◽  
Dong Wei Shao

In this paper, the chars of wood dust, corn straw, rice husk and coal pulverized were obtained at different residual time of various pyrolysis temperature (1173 K, 1273 K and 1373 K) during the process of flash pyrolysis in the drop tube furnace (DTF). In order to obtain the parameters of porous structure which included specific surface area, pore volume and fractal dimension of char, low-temperature nitrogen adsorption method was employed to obtain nitrogen adsorption isotherm of chars sample. For the four chars, the corn straw char had the biggest specific surface area and pore volume, the rice husk in second place, the wood dust in third place, and the pulverized coal char in the last one. By taking Frenkel-Halsey Hil (FHH) method to analyze the fractal character of char surface structure, we found that the fractal dimension of biomass except wood char is higher than those of pulverized coal char.


Sign in / Sign up

Export Citation Format

Share Document