Quantitative characterization and characteristic analysis of pore structure of shale-gas reservoir in the Sichuan Basin, China

2019 ◽  
Vol 7 (4) ◽  
pp. SJ23-SJ32 ◽  
Author(s):  
Huaimin Dong ◽  
Jianmeng Sun ◽  
Jinjiang Zhu ◽  
Zhenzhou Lin ◽  
Likai Cui ◽  
...  

Quantitative characterization of pore structure in shale can provide basic parameters for evaluation of the shale-gas reservoir quality. However, it is difficult to use conventional methods to accurately and comprehensively characterize the pore structure parameters. We take shale samples from the Longmaxi Formation in the Sichuan Basin as the study object, and we use the high-pressure mercury intrusion, nitrogen adsorption, and carbon dioxide adsorption methods to characterize the whole aperture distribution. We found that the pore size in shale is positively related to the transverse relaxation time ([Formula: see text] value) and there exists a conversion coefficient. We have developed a new method combining nuclear magnetic resonance (NMR) with hybrid detection methods for testing the pore size distribution, and we optimized the conversion coefficient between pore size obtained by a hybrid detection method and the [Formula: see text] value. NMR can then characterize the pore size distribution by conversion coefficient. This method can effectively make up for the deficiency of conventional methods for pore size distribution characterization by a single method. Our results indicate that the macropore, mesopore, and micropore in shale are very developed, and the pore shapes are ink bottle and slit-like. Shale pores mainly consist of mesopore and micropore, contributing to approximately 74.33% of pore volume, whereas micropore contributes approximately 70.18% of specific surface area (SSA). Therefore, the macropore has a limited effect on the pore volume and SSA. In addition, the establishment of whole aperture distribution characterization by the new method can more comprehensively reflect the actual pore distribution in shale.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yao Ya-feng ◽  
Lin Jian ◽  
Ge Jian ◽  
Peng Shi-long ◽  
Yin Jian-chao ◽  
...  

Nuclear magnetic resonance (NMR) technology provides an innovative method employed in detecting the porous structures in frozen rock and soil masses. On the basis of NMR relaxation theory, fuzzy random characteristics of the NMR T2 spectrum and pore structure are deeply analyzed in accordance with the complex and uncertain distribution characteristics of the underground rock and soil structure. By studying the fuzzy random characteristics of the NMR T2 spectrum, the fuzzy random conversion coefficient and conversion method of the T2 spectrum and pore size distribution are generated. Based on the niche principle, the traditional genetic algorithm is updated by the fuzzy random method, and the improved niche genetic algorithm is proposed. Then, the fuzzy random inversion of the conversion coefficient is undertaken by using the improved algorithm. It in turn makes the conversion curve of the T2 spectrum and pore size distribution align with the mercury injection test curve in diverse pore apertures. Compared with the previous least square fitting method, it provides a more accurate approach in characterizing complicated pore structures in frozen rock and soil masses. In addition, the improved niche genetic algorithm effectively overcomes the shortcomings of the traditional genetic algorithm, such as low effectiveness, slow convergence, and weak controllability, which provides an effective way for parameter inversion in the section of frozen geotechnical engineering. Finally, based on the T2 spectrum test of frozen sandstone, the fuzzy random characterization of frozen sandstone pore distribution is carried out by using this transformation method. The results illustrate that the conversion coefficient obtained through the improved algorithm indirectly considers the different surface relaxation rates of different pore sizes and effectively reduces the diffusion coupling effects, and the pore characteristics achieved are more applicable in engineering practices than previous methods.


2021 ◽  
Vol 11 (5) ◽  
pp. 2113-2125
Author(s):  
Chenzhi Huang ◽  
Xingde Zhang ◽  
Shuang Liu ◽  
Nianyin Li ◽  
Jia Kang ◽  
...  

AbstractThe development and stimulation of oil and gas fields are inseparable from the experimental analysis of reservoir rocks. Large number of experiments, poor reservoir properties and thin reservoir thickness will lead to insufficient number of cores, which restricts the experimental evaluation effect of cores. Digital rock physics (DRP) can solve these problems well. This paper presents a rapid, simple, and practical method to establish the pore structure and lithology of DRP based on laboratory experiments. First, a core is scanned by computed tomography (CT) scanning technology, and filtering back-projection reconstruction method is used to test the core visualization. Subsequently, three-dimensional median filtering technology is used to eliminate noise signals after scanning, and the maximum interclass variance method is used to segment the rock skeleton and pore. Based on X-ray diffraction technology, the distribution of minerals in the rock core is studied by combining the processed CT scan data. The core pore size distribution is analyzed by the mercury intrusion method, and the core pore size distribution with spatial correlation is constructed by the kriging interpolation method. Based on the analysis of the core particle-size distribution by the screening method, the shape of the rock particle is assumed to be a more practical irregular polyhedron; considering this shape and the mineral distribution, the DRP pore structure and lithology are finally established. The DRP porosity calculated by MATLAB software is 32.4%, and the core porosity measured in a nuclear magnetic resonance experiment is 29.9%; thus, the accuracy of the model is validated. Further, the method of simulating the process of physical and chemical changes by using the digital core is proposed for further study.


Author(s):  
Petra Foerst ◽  
M. Lechner ◽  
N. Vorhauer ◽  
H. Schuchmann ◽  
E. Tsotsas

The pore structure is a decisive factor for the process efficiency and product quality of freeze dried products. In this work the two-dimensional ice crystal structure was investigated for maltodextrin solutions with different concentrations by a freeze drying microscope. The resulting drying kinetics was investigated for different pore structures. Additionally the three-dimensional pore structure of the freeze dried samples was measured by µ-computed tomography and the pore size distribution was quantified by image analysis techniques. The two- and three-dimensional pore size distributions were compared and linked to the drying kinetics.Keywords: pore size distribution; freeze drying; maltodextrin solution; freeze drying microscope   


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1454 ◽  
Author(s):  
Yong Zhang ◽  
Bin Yang ◽  
Zhengxian Yang ◽  
Guang Ye

Capturing the long-term performance of concrete must be underpinned by a detailed understanding of the pore structure. Mercury intrusion porosimetry (MIP) is a widely used technique for pore structure characterization. However, it has been proven inappropriate to measure the pore size distribution of cementitious materials due to the ink-bottle effect. MIP with cyclic pressurization–depressurization can overcome the ink-bottle effect and enables a distinction between large (ink-bottle) pores and small (throat) pores. In this paper, pressurization–depressurization cycling mercury intrusion porosimetry (PDC-MIP) is adopted to characterize the pore structure in a range of cementitious pastes cured from 28 to 370 days. The results indicate that PDC-MIP provides a more accurate estimation of the pore size distribution in cementitious pastes than the standard MIP. Bimodal pore size distributions can be obtained by performing PDC-MIP measurements on cementitious pastes, regardless of the age. Water–binder ratio, fly ash and limestone powder have considerable influences on the formation of capillary pores ranging from 0.01 to 0.5 µm.


2014 ◽  
Vol 5 (1) ◽  
pp. 154-168
Author(s):  
Ali Mohammad Bagheri ◽  
Mohammad Mohammadnia ◽  
Ghafor Karimi

Conventional log based reservoir characterization of a gas reservoir in the Kangan and Dalan formations have recently been improved by application of the nuclear magnetic resonance log (NMR).    Important reservoir properties such as permeability, pore size distribution and capillary pressure curves can be estimated from NMR. These parameters are simulated directly in the laboratory on core samples recovered from the reservoir. Due to high cost associated with coring and some technical problems, few wells in any given field are cored.    The only problem of NMR measurements in gas reservoirs is that in gas-bearing zones, total NMR porosity read much less than actual porosity due to low hydrogen index of the gas. This problem was solved by integration of NMR porosity with conventional well logs such as density and sonic and compared with core porosity. Improved porosity calculation lead to better core independent permeability estimation on the wells logged with NMR.     NMR T2 distribution was calibrated with laboratory derived pore size distribution in 7 samples and a constant scaling factor was derived for each rock type to predict a pseudo pore size distribution from NMR. Logarithmic mean of pore size distribution in 4 wells with NMR was integrated with conventional logs in an artificial neural network to predict a pseudo pore size distribution logarithmic mean (PPSDLM) in the wells without NMR.    PPSDLM and conventional well logs were involved to an electrofacies modeling to predict electrofacies in the reservoir for characterization of heterogeneity of the reservoir in 3D geological model. NMR permeability was also imported to the model as an associated log to predict facies base permeability.    To test the permeability prediction, estimated permeability was compared with core derived permeability on 2 cored wells to see how well, estimated permeability fitted the actual core permeability.


2020 ◽  
pp. 014459872097067
Author(s):  
Hui Gao ◽  
Jie Cao ◽  
Chen Wang ◽  
Teng Li ◽  
Mengqing He ◽  
...  

Detailed study on the pore structure of shale oil reservoir is significantly for the exploration and development, and the conventional single pore structure measurement method cannot accurately describe the pore structure characteristics of the shale oil reservoir. In this paper, the Field Emission Scanning Electron Microscope (FESEM), low-pressure nitrogen adsorption (LP-N2A) and mercury injection porosimetry (MIP) techniques are used to comprehensive evaluate the pore structure of Chang 7 shale oil reservoir. The FESEM results show that inter pores, inner pores, organic pores and micro-cracks are developed in Chang 7 shale oil reservoir, and the pore structure can be divided into two groups from the LP-N2A and MIP. A new pore structure comprehensive evaluation method was promoted according to the connection points from the pore sizes distribution curves of LP-N2A and MIP. With this comprehensive analysis of the pore size distribution, the pore size distribution of various shale samples feature as triple-peak pattern. Due to the heterogeneity of the shale oil samples, the corresponding pore apertures of the connection points are various, and the overall pore size distribution of shale oil reservoir samples can also be divided into two types. In Group I, the size distributions exhibited a bimodal feature in a narrow range from 1.71 to 100 nm. The trimodal feature of size distributions was captured in Group II with the pore diameter ranges from 1.71 to 1426.8 nm. Group I features smaller sorting coefficient and good pore connectivity. However, the trimodal corresponds to the complex pore structure and larger sorting coefficient for Group II.


Soft Matter ◽  
2021 ◽  
Author(s):  
Sucharita Niyogi ◽  
Bhaskar Sen Gupta

In this paper, we study the mechanical properties and pore structure in a three-dimensional molecular dynamics model of porous glass under athermal quasistatic shear. The vitreous samples are prepared by...


1990 ◽  
Vol 180 ◽  
Author(s):  
Douglas M. Smith ◽  
Pamela J. Davis ◽  
C. Jeffrey Brinker

ABSTRACTThe use of NMR relaxation measurements for the in-situ study of pore structure evolution during gel aging and drying is illustrated. The change in the pore size distribution and surface area of both wet and dried gels is examined as a function of aging conditions including temporal aging, thermal aging, changing pH, and changing pore fluid. The effect of pore fluid pH on dissolution/reprecipitation in ordered packings of monodisperse silica spheres is also examined as a model system for particulate gels. As expected, the pore size distribution narrows with increasing time of treatment in high pH pore fluids. Interpretation of high pH results for the wet state is complicated by a microporous layer which forms on colloidal silica resulting in significantly larger wet surface area as compared to the final dried material. Narrowing of the pore size distribution, which is of interest for maximizing drying rates, is maximized in the least time by using either high pH or repeated ethanol washes for the base-catalyzed gel (B2) used.


Sign in / Sign up

Export Citation Format

Share Document