Protective effects of Emblica officinalis Gaertn. in cyclophosphamide-treated mice

2001 ◽  
Vol 20 (12) ◽  
pp. 643-650 ◽  
Author(s):  
R Haque ◽  
B Bin-Hafeez ◽  
I Ahmad ◽  
S Parvez ◽  
S Pandey ◽  
...  

Cyclophosphamide (CP) is one of the most popular alkylating anticancer drugs in spite of its toxic side effects including immunotoxicity, hematotoxicity, mutagenicity and a host of others. The present study was undertaken to assess the protective effects of total aqueous extract of a medicinal plant, Indian gooseberry (Emblica officinalis Gaertn.) in mice treated with CP. These protective effects were studied on immunological parameters and kidney and liver antioxidants. Plant extract treatment at a dose of 100 mg/kg body weight per os (p.o.) for 10 days resulted in the modulation of these parameters in normal as well as CP (50 mg/kg)-treated animals. Plant extract in particular was very effective in reducing CP-induced suppression of humoral immunity. Plant extract treatment in normal animals modulated certain antioxidants of kidney and liver. In CP-exposed animals, plant pretreatment provided protection to antioxidants of kidney. Not only were the reduced glutathione levels significantly (p<0.001) increased but plant extract treatment resulted in restoration of antioxidant enzymes in CP-treated animals. It is suggested that E. officinalis or its medicinal preparations may prove to be useful as a component of combination therapy in cancer patients under CP treatment regimen. Human & Experimental Toxicology (2001) 20, 643–650.

2021 ◽  
Vol 17 (2) ◽  
pp. 295
Author(s):  
Veeraraghavan Vishnu Priya ◽  

It is of interest to document the effect of Emblica officinalis (E. officinalis) and Zingiber officinalae (Z. officinalae) leaf extract on reactive oxygen species, antioxidant potential changes in arsenic and lead-induced toxicity in male rats. We used 8 groups of adult male Wistar rats with 1 control group for this study. The animals were divided into Group I: Control and Group II: Lead and sodium arsenite induced rats (animals were induced for metal toxicity by the combined administration of arsenic (13.8 mg/kg body weight) and lead (116.4 mg/kg body weight). These doses were administered by gastric intubation during 14 consecutive days using known standard procedures. Arsenic and lead induced rats treated with ethanolic extract of Emblica officinalis (60 mg/kg body weight/day, orally for 45 days) are group III rats.Group IV animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis (120 mg/kg body weight/day for 45 days). Group V animals are arsenic and lead induced rats treated orally with ethanolic extracts of Z. officinalae (60 mg/kg body weight/day for 45 days). Group VI animals are arsenic and lead induced rats orally treated with ethanolic extracts of Zingiber officinalis (120 mg/kg body weight/day for 45 days). Group VII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (60 + 60 mg/kg body weight/day for 45 days). Group VIII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day, orally for 45 days). Normal Control animals were treated orally with ethanolic extracts of E. officinalis (120mg/kg body weight) + Z. officinalae (120mg/kg body weight) for 45 days. The control and experimental animals were then subjected to analysis for oxidative stress markers such as H2O2, *OH, and lipid peroxidation (LPO), antioxidant enzymes in addition to liver and kidney function markers. Results: Arsenic and lead induced rats showed a significant increase in the levels of reactive oxygen species (H2O2, OH* and LPO) with concomitant alterations in the renal and liver tissues. However, enzymic and non-enzymic antioxidant levels were decreased. Nevertheless, an oral effective dose of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day increased the antioxidant enzymes and retrieved the altered levels of ROS and LPO that were induced by arsenic and lead. Thus, we show that E. officinalis and Z. officinalae leaf extract exhibits nephroprotective and hepatoprotective role through the restoration of reactive oxygen species and antioxidant enzymes in the kidney and liver tissue of Arsenic and Lead-induced nephrotoxicity and hepatotoxicity in rats. Hence, E. officinalis and Z. officinalae leaf extract are potential therapeutic options for the treatment of metal toxicity-induced kidney and liver diseases.


2003 ◽  
Vol 22 (9) ◽  
pp. 473-480 ◽  
Author(s):  
R Haque ◽  
B Bin-Hafeez ◽  
S Parvez ◽  
S Pandey ◽  
I Sayeed ◽  
...  

Walnut (Juglans regia L.) is extensively used in traditional systems of medicine for treatment of various ailments. It is described as an anticancer, tonic, blood purifier and detoxifier agent. The present study was undertaken to investigate modulatory effects of walnut extract on the toxicity of an anticancer drug, cyclophosphamide (CP) with special reference to protection against disruption of drug metabolizing and antioxidant enzymes. Plant extract+CP group animals showed restoration in the level of cytochrome P450 (CYP) content and in the activities of glutathione S-transferase (GST), glutathione peroxidase (GP) and catalase (CAT) in both liver and kidneys. But plant extract restored the activity of super oxide dismutase (SOD) and the level of reduced glutathione (GSH) in the kidneys only when compared with CP-treated animals. Plant extract treatment alone caused significant reduction in the content of CYP in the kidneys mainly. The extract showed a significant increase in the level of GSH and in the activities of GP in both the tissues and CAT in liver only, whereas no significant change was observed in the activities of GST and SOD. CP treatment resulted in a significant (P<0.01) increase in the lipid peroxidation (LPO) in the liver and kidneys compared with controls, while the extract CP treated group showed a significant decrease in the LPO in liver and kidneys when compared with the CP-treated group. The study shows that the use of J. regia extract might be helpful in abrogation of CP toxicity during the chemotherapy.


2011 ◽  
Vol 58 (3) ◽  
Author(s):  
Sarah O Nwozo ◽  
Babatunji E Oyinloye

In recent years there have been remarkable developments in the prevention of diseases, especially with regards to the role of free radicals and antioxidants. Ethanol-induced oxidative stress appears to be one mechanism by which ethanol causes liver injury. The protective effect of aqueous plant extract of Aframomum melegueta on ethanol-induced toxicity was investigated in male Wistar rats. The rats were treated with 45 % ethanol (4.8 g/kg b.w.t.) for 16 days to induce alcoholic diseases in the liver. The activities of alanine aminotransferase, aspartate aminotransferase and triglyceride were monitored and the histological changes in liver examined in order to evaluate the protective effects of the plant extract. Hepatic malondialdehyde and reduced glutathione, as well as superoxide dismutase and glutathione-S-transferase activities were determined for the antioxidant status. Chronic ethanol administration resulted in a statistically significant elevation of serum alanine aminotransferases and triglyceride levels, as well as a decrease in reduced glutathione and superoxide dismutase which was dramatically attenuated by the co-administration of the plant extract. Histological changes were related to these indices. Co-administration of the plant extract suppressed the elevation of lipid peroxidation, restored the reduced glutathion, and enhanced the superoxide dismutase activity. These results highlight the ability of Aframomum melegueta to ameliorate oxidative damage in the liver and the observed effects are associated with its antioxidant activities.


Author(s):  
Bindu ◽  
Rama Bhat ◽  
Girish ◽  
Krishna Prasad

Adipocyte dysfunction plays an important role in the obesity development. People with a body weight ~ 45% heavier than the average body weight are at risk of death two times greater than the average body weight. The use of anti-obesity drugs has many side effects, so it is necessary to find the anti-obesity drug with low toxicity. Many microbial secondary metabolites and chemically synthesized antiobesity drugs are available in the market with progressive side effects upon long term use of these medicines and drugs. Plant source antiobesity drugs are potentially sustainable safe source of treatment. This ex vivo study was conducted to determine the activity of Costusspeciosus (C.speciosus) plant extract in inhibiting triglycerides and cholesterol synthesis in HepG2 cells. Anti-obesity activity includes reduced formation of lipid droplet in HepG2 cells. The triglyceride levels and Lipolytic activity by measuring cholesterol levels was performed based on commercially available kits. This study suggested that the extract of C.speciosus inhibited triglycerides and cholesterol synthesis in HepG2 cell lines with inhibition of 89.25% and 52.01% respectively at the highest concentrations tested. This study confirms that the C.speciosus extract contain anti-adipogenesis activity and has potential to inhibit the synthesis of triglycerides and cholesterol in HepG2 cell.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sooad Saud Al-Otaibi ◽  
Maha Mohamad Arafah ◽  
Bechan Sharma ◽  
Abdullah Salih Alhomida ◽  
Nikhat Jamal Siddiqi

Objectives. The present study was carried out to study the protective effects of quercetin and α-lipoic acid alone and in combination against aluminum chloride induced neurotoxicity in rats. Materials and Methods. The study consisted of eight groups, namely, Group 1: control rats, Group 2: rats receiving aluminium chloride 7 mg/kg body weight intraperitoneal route (i.p) for two weeks, Group 3: rats receiving quercetin 50 mg/kg body weight i.p. for two weeks, Group 4: rats receiving quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 5: rats receiving α-lipoic acid 20 mg/kg body weight i.p. for two weeks, Group 6: rats receiving lipoic acid 20 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 7: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight i.p. for two weeks, and Group 8: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks. The animals were killed after 24 hours of the last dose by cervical dislocation. Results. Aluminium chloride treatment of rats resulted in significant increases in lipid peroxidation, protein carbonyl levels, and acetylcholine esterase activity in the brain. This was accompanied with significant decreases in reduced glutathione, activities of the glutathione reductase, and superoxide dismutase. Pretreatment of AlCl3 exposed rats to either quercetin or α-lipoic acid also restored altered lipid peroxidation and superoxide dismutase to near normal levels. Quercetin or α-lipoic acid pretreatment of AlCl3 exposed rats improved the protein carbonyl and reduced glutathione, glutathione reductase, and acetylcholine esterase activities in rat brains towards normal levels. Combined pretreatment of AlCl3 exposed rats with quercetin and α-lipoic acid resulted in a tendency towards normalization of most of the parameters. Conclusions. Quercetin and α-lipoic acid complemented each other in protecting the rat brain against oxidative stress induced by aluminium chloride.


2021 ◽  
Vol 17 (2) ◽  
pp. 295-305
Author(s):  
Vishnu Priya Veeraraghavan ◽  

It is of interest to document the effect of Emblica officinalis (E. officinalis) and Zingiber officinalae (Z. officinalae) leaf extract on reactive oxygen species, antioxidant potential changes in arsenic and lead-induced toxicity in male rats. We used 8 groups of adult male Wistar rats with 1 control group for this study. The animals were divided into Group I: Control and Group II: Lead and sodium arsenite induced rats (animals were induced for metal toxicity by the combined administration of arsenic (13.8 mg/kg body weight) and lead (116.4 mg/kg body weight). These doses were administered by gastric intubation during 14 consecutive days using known standard procedures. Arsenic and lead induced rats treated with ethanolic extract of Emblica officinalis (60 mg/kg body weight/day, orally for 45 days) are group III rats.Group IV animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis (120 mg/kg body weight/day for 45 days). Group V animals are arsenic and lead induced rats treated orally with ethanolic extracts of Z. officinalae (60 mg/kg body weight/day for 45 days). Group VI animals are arsenic and lead induced rats orally treated with ethanolic extracts of Zingiber officinalis (120 mg/kg body weight/day for 45 days). Group VII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (60 + 60 mg/kg body weight/day for 45 days). Group VIII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day, orally for 45 days). Normal Control animals were treated orally with ethanolic extracts of E. officinalis (120mg/kg body weight) + Z. officinalae (120mg/kg body weight) for 45 days. The control and experimental animals were then subjected to analysis for oxidative stress markers such as H2O2, *OH, and lipid peroxidation (LPO), antioxidant enzymes in addition to liver and kidney function markers. Results: Arsenic and lead induced rats showed a significant increase in the levels of reactive oxygen species (H2O2, OH* and LPO) with concomitant alterations in the renal and liver tissues. However, enzymic and non-enzymic antioxidant levels were decreased. Nevertheless, an oral effective dose of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day increased the antioxidant enzymes and retrieved the altered levels of ROS and LPO that were induced by arsenic and lead. Thus, we show that E. officinalis and Z. officinalae leaf extract exhibits nephroprotective and hepatoprotective role through the restoration of reactive oxygen species and antioxidant enzymes in the kidney and liver tissue of Arsenic and Lead-induced nephrotoxicity and hepatotoxicity in rats. Hence, E. officinalis and Z. officinalae leaf extract are potential therapeutic options for the treatment of metal toxicity-induced kidney and liver diseases.


Author(s):  
Islam Mohamed ◽  
Ahmed Moahmed ◽  
Mennatallah Abdelkader ◽  
Alaaeldin Saleh ◽  
Ala-Eddin Al-Moustafa

Introduction: Elaeagnus angustifolia (EA) is a medicinal plant that has been used for centuries in treating many human diseases, in the Middle East, including fever, amoebic dysentery, gastrointestinal problems. However, the effect of EA plant extract on human cancer progression especially oral malignancy has not been investigated yet. Thus, first we examined the effect of EA flower extract on angiogenesis in ovo, and on selected parameters in human oral cancer cells. Materials and methods: Chorioallantoic membranes (CAMs) of chicken embryos at 3-7 days of incubation were used to assess the effect EAflower plant extract on angiogenesis. Meanwhile, cell proliferation, soft agar, cell cycle, cell invasion and cell wounding assays were performed to explore the outcome of EA plant extract on FaDu and SCC25 oral cancer cell lines. On the other hand, western blot analysis was carried out to evaluate E-cadherin and Erk1/Erk2 expression and activation, respectively, in FaDu and SCC25 under the effect of EA extract. Results: Our data show that EA extract inhibits cell proliferation and colony formation, in addition to the initiation of Scell cycle arrest and reductionof G1/G2 phases. In parallel, EA extract provokes differentiation to an epithelial phenotype “mesenchymal-epithelial transition: MET” which is the opposite of “epithelial-mesenchymal transition, EMT”: an important event in cell invasion and metastasis. Thus, EA extract causes a dramatic decrease in cell motility and invasion abilities of FaDu and SCC25 cancer cells in comparison with their controls. These changes are accompanied by an up-regulation of E-cadherin expression. The molecular pathway analysis of the EA flower extract reveals that it can inhibit the phosphorylation of Erk1/Erk2, which could be behind the inhibition of angiogenesis, the initiation of MET event and the overexpression of E-cadherin. Conclusions: Our findings indicate that EA plant extract can downgrade human oral cancer progression by the inhibition of angiogenesis and cell invasion via Erk1/Erk2 signaling pathways.


2016 ◽  
Vol 5 (06) ◽  
pp. 4641 ◽  
Author(s):  
Adel Abdel Moneim* ◽  
Sanaa M. Abd El-Twab ◽  
Mohamed B. Ashour ◽  
Ahmed I. Yousef

The goal of diabetes treatment is primarily to save life and alleviate symptoms and secondary to prevent long-term diabetic complications resulting from hyperglycemia. Thus, our present investigation was designed to evaluate the hepato-renal protective effects of gallic acid and p-coumaric acid in nicotinamide/streptozotocin (NA/STZ)-induced diabetic rats. Experimental type 2 diabetes was induced by a single intraperitoneal (i.p.) injection of STZ (65 mg/kg b.wt.), after 15 min of i.p. injection of NA (120 mg/kg b.wt.). Gallic acid and p-coumaric acid were orally administered to diabetic rats at a dose of 20, 40 mg/kg b.wt./day, respectively, for 6 weeks. Body weight, serum glucose, protein profile, liver function enzymes and kidney function indicators was assayed. Treatment with either gallic acid or p-coumaric acid significantly ameliorated the elevated levels of glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea and uric acid. Both compounds were also found to restore total protein, albumin, and globulin as well as body weight of diabetic rats to near normal values. It can conclude that both gallic acid and p-coumaric acid have potent hypoglycemic and hepato-renal protective effects in diabetic rats. Therefore, our results suggest promising hypoglycemic agents that can attenuate the progression of diabetic hepatopathy and nephropathy.


Author(s):  
Dr. Shiromani Mishra ◽  
Prof. M. C. Sharma

Background: Amalaki is traditionally used drug in Ayurveda. Fruits of Amalaki is useful for cure of many disorders. On the basis of Desha Bheda (Habitat) two types of Amalaki are available viz., Gramya Phala (Cultivated) and Vanya Phala (Wild). cultivated variety is more often used as it offers gain to the manufacturers in terms of the amount of pulp available. To differentiate wild and cultivated variety through macroscopic, microscopic and powder microscopy this study was carried out. Objective: Present study was aimed to record comparative macroscopic, microscopic and powder microscopy of wild and cultivated varieties of Indian gooseberry. Methods: Authenticated matured fruits of both varieties were collected and macroscopic and microscopic characters were documented. Result: Fruit of wild variety is smaller and strong astringent than cultivated. In transverse section wild variety shows thick cuticle, lesser engaged area of mesocarp, compactly arranged cells and more concentration of fibres, sclereids and silica crystals than cultivated. Conclusion: Fruit of both varieties differ in size, colour and taste. In transverse section both varieties have same cells with some differentiating characters.


Sign in / Sign up

Export Citation Format

Share Document