Hepato-renal protective effects of gallic acid and p-coumaric acid in nicotinamide/streptozotocin-induced diabetic rats

2016 ◽  
Vol 5 (06) ◽  
pp. 4641 ◽  
Author(s):  
Adel Abdel Moneim* ◽  
Sanaa M. Abd El-Twab ◽  
Mohamed B. Ashour ◽  
Ahmed I. Yousef

The goal of diabetes treatment is primarily to save life and alleviate symptoms and secondary to prevent long-term diabetic complications resulting from hyperglycemia. Thus, our present investigation was designed to evaluate the hepato-renal protective effects of gallic acid and p-coumaric acid in nicotinamide/streptozotocin (NA/STZ)-induced diabetic rats. Experimental type 2 diabetes was induced by a single intraperitoneal (i.p.) injection of STZ (65 mg/kg b.wt.), after 15 min of i.p. injection of NA (120 mg/kg b.wt.). Gallic acid and p-coumaric acid were orally administered to diabetic rats at a dose of 20, 40 mg/kg b.wt./day, respectively, for 6 weeks. Body weight, serum glucose, protein profile, liver function enzymes and kidney function indicators was assayed. Treatment with either gallic acid or p-coumaric acid significantly ameliorated the elevated levels of glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea and uric acid. Both compounds were also found to restore total protein, albumin, and globulin as well as body weight of diabetic rats to near normal values. It can conclude that both gallic acid and p-coumaric acid have potent hypoglycemic and hepato-renal protective effects in diabetic rats. Therefore, our results suggest promising hypoglycemic agents that can attenuate the progression of diabetic hepatopathy and nephropathy.

2020 ◽  
Vol 11 (2) ◽  
pp. 2095-2100
Author(s):  
Lamia Mellahi ◽  
Zouhir Djerrou ◽  
Noureddine Bouzerna

The present study aimed to determine the possible protective effects of intraperitoneally administered sodium selenite for preventing diabetes in rats. Twenty-eight male albino rats were randomly divided into four equal groups of seven each: untreated control (G1), sodium selenite treated control (G2), untreated diabetic (G3), and sodium selenite-treated diabetic group (G4). Diabetes was induced by alloxan (150 mg/kg body weight) in groups G3 and G4 and rats were then treated with sodium selenite (5 μmol/kg body weight/day) for 4 weeks (G4). On day 28 after an overnight fasting, rats were killed and concentrations of serum glucose, total cholesterol, triglycerides, total lipid, urea, creatinine, uric acid, albumin and some enzymes activities: pancreatic lipase, glutamic oxalic transaminase (GOT), glutamic pyruvic transaminase (GPT), Alkaline phosphatase(ALP) were also estimated. The administration of alloxan significantly increased serum glucose, total cholesterol, triglycerides, total lipid, urea, uric acid levels, pancreatic lipase, GOT, GPT and ALP activities, body weight gain and albumin level were significantly decreased. This alteration was restored back to near normal in diabetic rats intraperitoneal treated with sodium selenite in comparison to non treated diabetic animals. Serum creatinine concentration was normal in all groups. The study concludes that alloxan diabetes mellitus induced severe biochemical alliterations in the glucose, lipid profile concentrations, liver and kidney function markers and sodium selenite has shown protective effects preventing at least partially diabetic complications.


2020 ◽  
Vol 10 ◽  
Author(s):  
Kalyani Pathak ◽  
Aparoop Das ◽  
Anshul Shakya ◽  
Riya Saikia ◽  
Himangshu Sarma

Background: The leaves of Annona reticulata Linn. have been traditionally used by the tribes of Assam as a source of medicine to mitigate a range of health ailments including diabetes and obesity. Objectives: The current study aimed to evaluate the anti-diabetic and anti-hyperlipidemic potential of bioactive fractions isolated from the methanolic extract of Annona reticulata Linn. leaves using Nicotinamide + Streptozotocin (60 mg/kg, i.p.) induced diabetic rats. Methods: The partially purified bioactive fractions, namely F1, F2, F3 and F4 were administered to diabetic rats with the dose of 200 mg/kg, per oral (p.o.) and the effect of the fractions on serum glucose were studied up to 21 days. The potent fractions were further subjected for spectral analysis for identification of the isolated active compounds. Results: The in-vivo anti-diabetic activity of the isolated fractions F2 and F3 were found significant controlling blood glucose level, alike glibenclamide. Interestingly, F2 and F3 treated animals were found significant in restoring the lipid and liver enzymes profile in streptozotocin challenge rats. Further, spectral analysis revealed that F2 and F3 were comprises Quercetin and Gallic acid, respectively. Conclusion: Outcome of finding demonstrate the anti-diabetic and anti-hyperlipidemic potential of the isolates/fractions of A. reticulata, which were found enriched in polyphenolics including Quercetin and Gallic acid; and provides logistic behind the traditional use of the A. reticulata against Diabetes and obesity.


1985 ◽  
Vol 106 (2) ◽  
pp. 225-231 ◽  
Author(s):  
A.-M. Mendes ◽  
R. J. Madon ◽  
D. J. Flint

ABSTRACT Cortisol implants in normal and diabetic rats reduced body weight, adiposity, insulin receptor concentration and both basal and insulin-stimulated rates of lipogenesis in isolated adipocytes, whilst insulin sensitivity was unchanged. In normal but not diabetic rats these changes were accompanied by increased serum glucose and insulin concentrations. In contrast, progesterone implants in normal and diabetic rats increased body weight gain, adiposity, insulin receptor concentration and both basal and insulin-stimulated rates of lipogenesis in adipose tissue, again without affecting insulin sensitivity. Progesterone did not affect serum insulin concentrations in normal or diabetic rats but accelerated the decline in serum glucose concentrations which occurred during an overnight fast in diabetic rats. The results suggest that (1) cortisol inhibits lipogenesis in adipose tissue without affecting insulin sensitivity, (2) cortisol reduces insulin binding in adipose tissue without a requirement for hyperinsulinaemia, which might itself indirectly lead to down-regulation of the insulin receptor, and (3) in diabetic rats progesterone stimulates lipogenesis in adipose tissue without any increase in food intake or serum insulin concentrations suggesting that progesterone may have a direct anabolic role in adipose tissue. J. Endocr. (1985) 106, 225–231


2016 ◽  
Vol 7 (3) ◽  
pp. 409-420 ◽  
Author(s):  
T.M. Marques ◽  
E. Patterson ◽  
R. Wall ◽  
O. O’Sullivan ◽  
G.F. Fitzgerald ◽  
...  

The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~109microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~109 L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (P<0.05), but did not alter other metabolic markers in healthy rats. Diabetes induced by STZ injection decreased body weight (P<0.05), increased intestinal length (P<0.05) and stimulated water and food intake. Insulin was decreased (P<0.05), whereas glucose was increased (P<0.001) in all diabetic groups, compared with non-diabetic controls. A decrease (P<0.01) in glucose levels was observed in diabetic rats receiving L. brevis DPC 6108, compared with diabetic-controls. Both the composition and diversity of the intestinal microbiota were affected by diabetes. Microbial diversity in diabetic rats supplemented with low GABA was not reduced (P>0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.


2018 ◽  
Vol 16 (3) ◽  
Author(s):  
Gabriel Keine Kuga ◽  
Rafael Calais Gaspar ◽  
Vitor Rosetto Muñoz ◽  
Susana Castelo Branco Ramos Nakandakari ◽  
Leonardo Breda ◽  
...  

ABSTRACT Objective To investigate the effects of physical training on metabolic and morphological parameters of diabetic rats. Methods Wistar rats were randomized into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes mellitus was induced by Alloxan (35mg/kg) administration for sedentary diabetic and Trained Diabetic Groups. The exercise protocol consisted of swimming with a load of 2.5% of body weight for 60 minutes per day (5 days per week) for the trained control and Trained Diabetic Groups, during 6 weeks. At the end of the experiment, the rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin and total protein. Liver samples were extracted for measurements of glycogen, protein, DNA and mitochondrial diameter determination. Results The sedentary diabetic animals presented decreased body weight, blood insulin, and hepatic glycogen, as well as increased glycemia and mitochondrial diameter. The physical training protocol in diabetic animals was efficient to recovery body weight and liver glycogen, and to decrease the hepatic mitochondrial diameter. Conclusion Physical training ameliorated hepatic metabolism and promoted important morphologic adaptations as mitochondrial diameter in liver of the diabetic rats.


1995 ◽  
Vol 268 (1) ◽  
pp. R142-R149 ◽  
Author(s):  
A. M. Strack ◽  
R. J. Sebastian ◽  
M. W. Schwartz ◽  
M. F. Dallman

Signals that regulate long-term energy balance have been difficult to identify. Increasingly strong evidence indicates that insulin, acting on the central nervous system in part through its effect on neuropeptide Y (NPY), inhibits food intake. We hypothesized that corticosteroids and insulin might serve as interacting, reciprocal signals for energy balance, acting on energy acquisition, in part through their effects on hypothalamic NPY, as well as on energy stores. Because glucocorticoids also stimulate insulin secretion, their role is normally obscured. Glucocorticoids and insulin were clamped in adrenalectomized rats with steroid replacement and streptozotocin-induced diabetes. Glucocorticoids stimulated and insulin inhibited NPY mRNA and food intake. Glucocorticoids inhibited and insulin increased energy gain as determined by the change in body weight. When adrenalectomized diabetic rats were treated, corticosterone stimulated and insulin inhibited food intake, and, respectively, inhibited and increased overall energy gain. More than 50% of the variance was explained by regression analysis of the two hormones on food intake and body weight. Thus glucocorticoids and insulin are major, antagonistic, long-term regulators of energy balance. The effects of corticosterone and insulin on food intake may be mediated, in part, through regulation of hypothalamic NPY synthesis and secretion.


Biologia ◽  
2006 ◽  
Vol 61 (3) ◽  
Author(s):  
Monika Kassayová ◽  
Martina Marková ◽  
Bianka Bojková ◽  
Eva Adámeková ◽  
Peter Kubatka ◽  
...  

AbstractThe question of effects of long-term melatonin (MEL) administration have not yet been explained sufficiently, especially its metabolic consequences in young persons and animals. The aim of the present study was to analyze the effects of MEL given during prolonged time (for 3 months) and chronically (for 6 months) at the dose of 4 µg/mL of tap water, on the selected metabolic and hormonal parameters in young female and male Wistar:Han (WH) rats. The weights of selected organs, tissues, body weight gains and food and water intake were registered. Six weeks aged rats were adapted to standard housing conditions and light regimen L:D=12:12 h, fed standard laboratory diet and drank tap water (controls) or MEL solution ad libitum; finally they were sacrificed after overnight fasting. Prolonged MEL administration decreased serum glucose concentration and increased triacylglycerol and malondialdehyde concentration/content in the liver in females. In males MEL increased concentrations of serum phospholipids, corticosterone and liver malondialdehyde. MEL treatment reduced the body weight in both sexes and weight of epididymal fat in males, without any alterations of food and water intake. Chronic MEL administration reduced serum glucose concentration and increased concentration/content of glycogen, triacylglycerol and cholesterol in the liver and glycogen concentration/content in heart muscle in males. In females, the significant rise of serum corticosterone concentration and liver malondialdehyde content was recorded. MEL significantly increased liver weight and decreased thymus weight in males. MEL administration increased temporarily water intake in males, body and epididymal fat weights were similar to that in controls. Body weight of MEL drinking females was reduced in the 1st half of experiment only; the food and water intake did not differ from control group. The response in WH rats on MEL was more prominent as in the Sprague-Dawley strain (our previous studies). Male rats were generally more affected, probably due to higher daily and total consumption of melatonin.


1992 ◽  
Vol 83 (5) ◽  
pp. 575-581 ◽  
Author(s):  
Martin Muntzel ◽  
Thierry Hannedouche ◽  
Roberte Niesor ◽  
Laure-Helène Nöel ◽  
Jean-Claude Souberbielle ◽  
...  

1. To determine whether treatment with octreotide, a somatostatin analogue, may diminish or prevent long-term diabetic renal hypertrophy and nephropathy, uninephrectomized streptozotocin-diabetic rats maintained under moderate glycaemic control (∼300 mg/dl) were treated with either placebo (n = 10 rat/group) or octreotide for 14 weeks. Uninephrectomized non-diabetic rats given either placebo or octreotide served as controls. 2. Average body weight was diminished and kidney weight, daily urinary protein excretion, glomerular filtration rate and renal plasma flow were elevated in both diabetic groups relative to controls. 3. Administration of octreotide reduced average body weight and packed cell volume in non-diabetic and diabetic rats compared with their respective controls, but did not affect glomerular hyperfiltration or the increase in urinary protein excretion. 4. Histological examination at 14 weeks disclosed unequivocal glomerular hypertrophy and mild glomerular and tubulointerstitial lesions consistent with early diabetic renal alterations in all diabetic rats, but there was no independent effect of octreotide treatment 5. Thus, long-term treatment with octreotide did not afford protection against the development of renal hypertrophy-hyperfiltration and the evolution of early diabetic nephropathy in rats.


2017 ◽  
Vol 43 (4) ◽  
pp. 343-351 ◽  
Author(s):  
Betül Evran ◽  
Abdurrahman Fatih Aydın ◽  
Buse Uğuralp ◽  
Mehmet Sar ◽  
Semra Doğru-Abbasoğlu ◽  
...  

Abstract Objective The present study was aimed to investigate the effects of betaine (BET) on streptozotocin (STZ)-induced diabetes mellitus (DM) in rats. Additionally, the efficiency of BET was compared with metformin (MET), a standard oral antidiabetic drug. Methods STZ (55 mg/kg body weight; i.p.) was injected to male Wistar rats. Rats with DM were treated with BET (1 g/kg body weight/day;) or MET (500 mg/kg body weight/day;) for 4 weeks. Blood glycated hemoglobin (HbA1c), serum glucose, lipids, hepatic and renal function tests and urinary protein levels were examined. Reactive oxygen species (ROS) formation, malondialdehyde (MDA), glutathione (GSH) levels, and ferric reducing antioxidant power (FRAP) were also determined in liver and kidney. Results Glucose, HbA1c, and serum lipids increased and liver and kidney function tests were impaired in diabetic rats. Hepatic and renal ROS formation and MDA levels were elevated, hepatic, but not renal GSH and FRAP levels were decreased. BET decreased blood HbA1c, serum glucose and lipid levels and urine protein levels. BET diminished hepatic and renal prooxidant status. Conclusion Our results indicate that BET may be effective in decreasing STZ-induced high levels of blood HbA1c, and serum glucose and lipid levels and prooxidant status in liver and kidney tissues.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Weifeng Ji ◽  
Haiying Huang ◽  
Ji Chao ◽  
Wuchao Lu ◽  
Jianyou Guo

Objective. The present investigation examined the neuroprotective effect ofAgaricus brasiliensis(AbS) against STZ-induced diabetic neuropathic pain in laboratory rats. STZ-induced diabetic rats were administered orally with AbS. Body weight, serum glucose, and behavioral parameters were measured before and at the end of the experiment to see the effect of AbS on these parameters. After 6 weeks of treatments, all animals were sacrificed to study various biochemical parameters. Treatment with AbS 80 mg/kg in diabetic animals showed significant increase in body weight, pain threshold, and paw withdrawal threshold and significant decrease in serum glucose, LPO and NO level, Na-K-ATPase level, and TNF-αand IL-1βlevel as compared to vehicle treated diabetic animals in dose and time dependent manner. AbS can offer pain relief in PDN. This may be of potential benefit in clinical practice for the management of diabetic neuropathy.


Sign in / Sign up

Export Citation Format

Share Document