Multidimensional flow characterization of circulating immune cells in cisplatin-resistant metastatic urothelial cancer (mUC) patients (pts) treated with pembrolizumab (P) with or without acalabrutinib (acala).

2019 ◽  
Vol 37 (7_suppl) ◽  
pp. 357-357
Author(s):  
Tian Zhang ◽  
Janet S. Staats ◽  
Cliburn Chan ◽  
Ajjai Shivaram Alva ◽  
Peter H. O'Donnell ◽  
...  

357 Background: Immunotherapy checkpoint inhibitors (ICIs) are now standard treatments (txs) in mUC, with response rates ranging 15-25%. A phase 2 randomized study (NCT02351739) treated 75 pts with mUC with either P or PA. We profiled peripheral blood mononuclear cells (PBMCs) to understand changes on tx. Methods: Comprehensive immune profiling of PBMCs was performed at baseline, weeks (wk) 4, 7, and 10. The Wilcoxon rank sum (WRS) test was used to compare tx arms, as well as pts with complete and partial response (CR/PR) vs disease progression (PD). Using the Benjamini-Hochberg (BH) method, results were deemed significant if they had false discovery rate (FDR) of 0.1 or less. Results: Clinical responses did not differ between tx arms (Zhang T et al, ESMO, 2017). The majority of patients showed largest immune changes from baseline at wk7. Comparing P vs PA pts, the PA group had statistically significant increases in PD-L1+ monocytes; CD8 T cells expressing: CD39, CTLA-4, ICOS, PD-1, TIM3, HLA-DR, Ki67, CD39/HLA-DR, CD39/Ki67, and PD-1/TIM-3; and exhausted (CD28-) CD8 T cells expressing ICOS and PD-L1 (Table). Comparing CR/PR vs PD pts, Treg subsets expressing CCR4/HLA-DR and CD39/HLA-DR were significant by WRS but not FDR criteria. Conclusions: From this extensive, exploratory, non-functional flow analysis of PBMCs, PA may potentiate immune changes of PD-L1+ monocytes and CD8+ T cell subsets. Increasing activated peripheral Tregs in CR/PR pts in either arm may indicate marginalization of Tregs from the tumor microenvironment. [Table: see text]

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi123
Author(s):  
Christina Jackson ◽  
John Choi ◽  
JiaJia Zhang ◽  
Anna Piotrowski ◽  
Tobias Walbert ◽  
...  

Abstract BACKGROUND Immune checkpoint inhibitors (ICIs) are not uniformly effective in glioblastoma treatment. Immunogenomic determinants may identify patients who are most likely to benefit from these therapies. Therefore, we compared the immunogenomic phenotype of a responder to combination anti-LAG-3 and anti-PD-1 therapy to non-responders. METHODS We performed T cell receptor (TCR) sequencing and gene expression analysis on pre-treatment, post-chemoradiation, and post-immunotherapy tumor specimens of glioblastoma patients treated with anti-LAG3 in combination with anti-PD-1 after first recurrence (NCT02658981, ongoing). We evaluated T cell clonotypes and immunophenotype of serially collected peripheral blood mononuclear cells (PBMCs) during treatment using multi-parametric flow cytometry. RESULTS To date, six patients have been enrolled in the initial anti-LAG-3 and anti-PD-1 cohort. One patient demonstrated complete response, one had stable disease, and four had progressive disease by radiographic evaluation. The responder demonstrated substantially higher TCR clonality in the resected tumor at initial diagnosis compared to non-responders (mean 0.028 vs. 0.005). Shared tumor infiltrating clonotypes with pre-immunotherapy PBMCs exhibited an increase in frequency from initial resection (6.8%) to resection at recurrence (20%). The responder’s tumor at initial resection exhibited increased gene signatures of PD1low CD8+ T cells, chemokine signaling, and interferon gamma pathways. On PBMC phenotypic analysis, the responder demonstrated significantly higher percentages of CD137+ CD8+T cells (median 8.38% vs 3.24%, p=0.02) and lower percentages of Foxp3+CD137+ CD4+T cells compared to non-responders (median 18.5% vs. 38.5%, p=0.006). Interestingly, dynamic analysis of PBMCs showed that the responder demonstrated a lower percentage of PD1+ CD8+ T cells pre-immunotherapy (median 2.5% vs.12.4%, p=0.002), with persistent decrease over the course of treatment while non-responders showed no consistent pattern. CONCLUSION Our preliminary results demonstrate significant differences in tumor and peripheral blood immunogenomic characteristics between responder and non-responders to anti-LAG3 and anti-PD-1 therapy. These immunogenomic characteristics may help stratify patients’ response to combination ICIs.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 644 ◽  
Author(s):  
Vatzia ◽  
Pierron ◽  
Saalmüller ◽  
Mayer ◽  
Gerner

The Fusarium mycotoxin deoxynivalenol (DON) contaminates animal feed worldwide. In vivo, DON modifies the cellular protein synthesis, thereby also affecting the immune system. However, the functional consequences of this are still ill-defined. In this study, peripheral blood mononuclear cells from healthy pigs were incubated with different DON concentrations in the presence of Concanavalin A (ConA), a plant-derived polyclonal T-cell stimulant. T-cell subsets were investigated for proliferation and expression of CD8α, CD27, and CD28, which are involved in activation and costimulation of porcine T cells. A clear decrease in proliferation of all ConA-stimulated major T-cell subsets (CD4+, CD8+, and γδ T cells) was observed in DON concentrations higher than 0.4 µM. This applied in particular to naïve CD4+ and CD8+ T cells. From 0.8 μM onwards, DON induced a reduction of CD8α (CD4+) and CD27 expression (CD4+ and CD8+ T cells). CD28 expression was diminished in CD4+ and CD8+ T cells at a concentration of 1.6 µM DON. None of these effects were observed with the DON-derivative deepoxy-deoxynivalenol (DOM-1) at 16 µM. These results indicate that DON reduces T-cell proliferation and the expression of molecules involved in T-cell activation, providing a molecular basis for some of the described immunosuppressive effects of DON.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1994-1995 ◽  
Author(s):  
Masako Moriuchi ◽  
Hiroyuki Moriuchi

Abstract Although it is widely believed that viral clearance is mediated principally by the destruction of infected cells by cytotoxic T cells, noncytolytic antiviral activity of CD8+ T cells may play a role in preventing the progression to disease in infections with immunodeficiency viruses and hepatitis B virus. We demonstrate here that (1) replication of human T-lymphotropic virus type I (HTLV-I) is more readily detected from CD8+ T-cell–depleted (CD8−) peripheral blood mononuclear cells (PBMCs) of healthy HTLV-I carriers than from unfractionated PBMCs, (2) cocultures of CD8− PBMCs with autologous or allogeneic CD8+ T cells suppressed HTLV-I replication, and (3) CD8+ T-cell anti-HTLV-I activity is not abrogated intrans-well cultures in which CD8+ cells are separated from CD8− PBMCs by a permeable membrane filter. These results suggest that class I-unrestricted noncytolytic anti–HTLV-I activity is mediated, at least in part by a soluble factor(s), and may play a role in the pathogenesis of HTLV-I infection.


Author(s):  
L. Sams ◽  
S. Kruger ◽  
V. Heinemann ◽  
D. Bararia ◽  
S. Haebe ◽  
...  

Abstract Purpose This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). Patients and methods Peripheral blood mononuclear cells were isolated before and 30 days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. Results Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0 months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0 months (p = 0.011), respectively. Conclusions Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1770-1780 ◽  
Author(s):  
M Massaia ◽  
A Bianchi ◽  
C Attisano ◽  
S Peola ◽  
V Redoglia ◽  
...  

Abstract Cellular immunity was investigated in 43 patients with multiple myeloma (MM) by assessing 3HTdR uptake induced by monocyte-dependent [CD3 monoclonal antibodies (MoAbs), phytohemagglutinin (PHA)] and monocyte- independent (CD2 MoAbs, ionomycin + phorbolester) stimulations. The former were evaluated in peripheral blood mononuclear cells (PBMNC) and purified T cells; the latter were evaluated in purified T-cell preparations only. MM showed significantly lower PBMNC responses to PHA (P less than .001), soluble OKT3 (CD3) (P = .01), and immobilized OKT3 MoAbs (P = .01). On purification of T cells, MM responses were still defective to soluble T11(2) + T11(3) (CD2) MoAbs (P = .004), phorbol myristate acetate (PMA) plus ionomycin (P less than .001), but significantly higher to plastic-immobilized OKT3 (P = .004). In some MM, 3HTdR uptake, interleukin-2 (IL-2) receptor (CD25) expression, and IL-2 production were as high on stimulation with plastic-immobilized OKT3 as that observed in normal subjects under optimal conditions (ie, plastic-immobilized OKT3 plus accessory signals). CD3 hyperreactivity correlated with the number of CD8+ HLA-DR+ cells in MM T-cell preparations. MM patients with more than 10% CD8+ HLA-DR+ cells had significantly higher responses to immobilized OKT3 (P less than .001), but lower responses to T11(2) plus T11(3) (P = .01), and PMA plus ionomycin (P = .03) than patients with less than 10% CD8+ HLA-DR+ cells. Phenotyping of CD45RA (naive) and CD45R0 (memory) expressions in resting MM T cells showed a lower ratio of CD45RA to CD45R0 in both CD4 (P less than .05) and CD8 (P less than .001) subpopulations. These data indicate that (a) some MM T cells require significantly fewer accessory signals (if any) to express the IL-2 receptor fully, secrete IL-2, and proliferate on multivalent cross-linking of the CD3/TCR complex; and (b) this peculiar state of activation is associated with high HLA-DR expression in CD8+ lymphocytes.


Author(s):  
jia liu ◽  
Xuecheng Yang ◽  
Hua Wang ◽  
Ziwei Li ◽  
Hui Deng ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects millions of people and killed hundred-thousands of individuals. While acute and intermediate interactions between SARS-CoV-2 and the immune system have been studied extensively, long-term impacts on the cellular immune system remained to be analyzed. Here, we comprehensively characterized immunological changes in peripheral blood mononuclear cells in 49 COVID-19 convalescent individuals (CI) in comparison to 27 matched SARS-CoV-2 unexposed individuals (UI). Despite recovery from the disease for more than 2 months, CI showed significant decreases in frequencies of invariant NKT and NKT-like cells compared to UI. Concomitant with the decrease in NKT-like cells, an increase in the percentage of Annexin V and 7-AAD double positive NKT-like cells was detected, suggesting that the reduction in NKT-like cells results from cell death months after recovery. Significant increases in regulatory T cell frequencies, TIM-3 expression on CD4 and CD8 T cells, as well as PD-L1 expression on B cells were also observed in CI, while the cytotoxic potential of T cells and NKT-like cells, defined by GzmB expression, was significantly diminished. However, both CD4 and CD8 T cells of CI showed increased Ki67 expression and were fully capable to proliferate and produce effector cytokines upon TCR stimulation. Collectively, we provide the first comprehensive characterization of immune signatures in patients recovering from SARS-CoV-2 infection, suggesting that the cellular immune system of COVID-19 patients is still under a sustained influence even months after the recovery from disease.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 250
Author(s):  
Yongle Xiao ◽  
Huan Zhang ◽  
Jianlin Chen ◽  
Yi Chen ◽  
Jinghai Li ◽  
...  

Vaccines against Porcine circovirus type 2 (PCV2) have been studied intensely and found to be effective in decreasing mortality and improving growth in swine populations. In this study, interleukin-23 (IL-23) gene was cloned from peripheral blood mononuclear cells (PBMCs) of Tibetan pigs and inserted into a eukaryotic VR1020 expression vector-VRIL23. Coated with chitosan (CS), the VRIL23-CS was intramuscularly injected into 3-week-old piglets with PCV2 vaccine. The blood was collected after vaccination at 0, 1, 2, 4, 8, and 12 weeks, respectively, to detect the immunological changes. The IgG2a and specific PCV2 antibodies were detected using ELISA, and blood CD4+ and CD8+ T cells were quantified by flow cytometry. Quantitative fluorescence PCR was used to evaluate the expression of immune genes. The results indicate that leukocytes, erythrocytes, and CD4+ and CD8+ T cells increased significantly in the blood of VRIL23-CS inoculated piglets in comparison with the control (p < 0.05) and so did the IgG2a and PCV2 antibodies. In addition, the expressions of Toll-like receptor (TLR) 2, TLR7, cluster of differentiation (CD) 45, IL-15, IL-12, signal transducer and activator of transcription (STAT)1, STAT2, STAT3, STAT4, and B-cell lymphoma (Bcl)-2 genes were also obviously higher in the VRIL23-CS inoculated pigs at different time points (p < 0.05). Overall, the results demonstrated that VRIL23-CS can enhance the comprehensive immune responses to PCV2 vaccine in vivo and has the promising potential to be developed into a safe and effective adjuvant to promote the immunity of pig against PCV disease.


2020 ◽  
Vol 36 (4) ◽  
pp. 429-442
Author(s):  
Anh-Tuan Tran ◽  
Jeannette Kluess ◽  
Susanne Kersten ◽  
Andreas Berk ◽  
Marleen Paulick ◽  
...  

Abstract The main objective of this study was to evaluate the effects of sodium sulfite (SoS) treatment of maize and its impact on the porcine immune system in the presence of an LPS-induced systemic inflammation. Control maize (CON) and Fusarium-toxin contaminated maize (FUS) were wet-preserved (20% moisture) for 79 days with (+) or without (−) SoS and then included at 10% in a diet, resulting in four experimental groups: CON−, CON+, FUS−, and FUS+ with deoxynivalenol (DON) concentrations of 0.09, 0.05, 5.36, and 0.83 mg DON/kg feed, respectively. After 42-day feeding trial (weaned barrows, n = 20/group), ten pigs per group were challenged intraperitoneally with either 7.5 μg LPS/kg BW or placebo (0.9% NaCl), observed for 2 h, and then sacrificed. Blood, mesenteric lymph nodes, and spleen were collected for phenotyping of different T cell subsets, B cells, and monocytes. Phagocytic activity and intracellular formation of reactive oxygen species (ROS) were analyzed in both polymorphonuclear cells (PMN) and peripheral blood mononuclear cells (PBMC) using flow cytometry. Our results revealed that the impact of DON was more notable on CD3+CD4+CD8+ T cells in lymphoid tissues rather than in blood T cells. In contrast, SoS treatment of maize altered leukocyte subpopulations in blood, e.g., reduced the percentage and fluorescence signal of CD8high T cells. Interestingly, SoS treatment reduced the amount of free radicals in basal ROS-producing PMNs only in LPS-challenged animals, suggesting a decrease in basal cellular ROS production (pSoS*LPS = 0.022).


Sign in / Sign up

Export Citation Format

Share Document