Ent-Kaurenes: Natural Agents with Potential for the Pharmaceutical

2021 ◽  
pp. 317-330
Author(s):  
Carlos Camacho-González ◽  
Francisco Fabián Razura-Carmona ◽  
Mayra Herrera-Martínez ◽  
Efigenia Montalvo-González ◽  
Sonia Sáyago-Ayerdi ◽  
...  
Keyword(s):  
2021 ◽  
Vol 7 (6) ◽  
pp. 428
Author(s):  
Men Thi Ngo ◽  
Minh Van Nguyen ◽  
Jae Woo Han ◽  
Myung Soo Park ◽  
Hun Kim ◽  
...  

In the search for antifungal agents from marine resources, we recently found that the culture filtrate of Trichoderma longibrachiatum SFC100166 effectively suppressed the development of tomato gray mold, rice blast, and tomato late blight. The culture filtrate was then successively extracted with ethyl acetate and n-butanol to identify the fungicidal metabolites. Consequently, a new compound, spirosorbicillinol D (1), and a new natural compound, 2′,3′-dihydro-epoxysorbicillinol (2), together with 11 known compounds (3–13), were obtained from the solvent extracts. The chemical structures were determined by spectroscopic analyses and comparison with literature values. The results of the in vitro antifungal assay showed that of the tested fungal pathogens, Phytophthora infestans was the fungus most sensitive to the isolated compounds, with MIC values ranging from 6.3 to 400 µg/mL, except for trichotetronine (9) and trichodimerol (10). When tomato plants were treated with the representative compounds (4, 6, 7, and 11), bisvertinolone (6) strongly reduced the development of tomato late blight disease compared to the untreated control. Taken together, our results revealed that the culture filtrate of T. longibrachiatum SFC100166 and its metabolites could be useful sources for the development of new natural agents to control late blight caused by P. infestans.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1343
Author(s):  
Gagan Chhabra ◽  
Chandra K. Singh ◽  
Deeba Amiri ◽  
Neha Akula ◽  
Nihal Ahmad

Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol’s effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.


2021 ◽  
Vol 22 (6) ◽  
pp. 3085
Author(s):  
Hamza A. Alaswad ◽  
Amani A. Mahbub ◽  
Christine L. Le Maitre ◽  
Nicola Jordan-Mahy

Leukaemia is a malignant disease of the blood. Current treatments for leukaemia are associated with serious side-effects. Plant-derived polyphenols have been identified as potent anti-cancer agents and have been shown to work synergistically with standard chemotherapy agents in leukaemia cell lines. Polyphenols have multiple mechanisms of action and have been reported to decrease cell proliferation, arrest cell cycle and induce apoptosis via the activation of caspase (3, 8 and 9); the loss of mitochondrial membrane potential and the release of cytochrome c. Polyphenols have been shown to suppress activation of transcription factors, including NF-kB and STAT3. Furthermore, polyphenols have pro-oxidant properties, with increasing evidence that polyphenols inhibit the antioxidant activity of glutathione, causing oxidative DNA damage. Polyphenols also induce autophagy-driven cancer cell death and regulate multidrug resistance proteins, and thus may be able to reverse resistance to chemotherapy agents. This review examines the molecular mechanism of action of polyphenols and discusses their potential therapeutic targets. Here, we discuss the pharmacological properties of polyphenols, including their anti-inflammatory, antioxidant, anti-proliferative, and anti-tumour activities, and suggest that polyphenols are potent natural agents that can be useful therapeutically; and discuss why data on bioavailability, toxicity and metabolism are essential to evaluate their clinical use.


2021 ◽  
Vol 11 (9) ◽  
pp. 3998
Author(s):  
Abdelfattah El Moussaoui ◽  
Hamza Mechchate ◽  
Mohammed Bourhia ◽  
Imane Es-safi ◽  
Ahmad Mohammad Salamatullah ◽  
...  

Diabetes mellitus is a metabolic syndrome that causes impairment, mortality, and many other complications. Insulin and several synthetic medications are currently used in the treatment of diabetes. However, these pharmaceutical drugs are costly, and therefore medicines place priority on alternatives to fight this lethal disease. This modest study aims to investigate the chemical composition, antidiabetic and antihyperglycemic potentials along with subacute toxicity (bodyweight change and biochemical parameters) of hydroethanol extract from Withania frutescens L. roots (WFRE). The chemical analysis was carried out using GC–MS after extract silylation. The chemical analysis identified many potentially active compounds that may determine the antidiabetic results of WFRE. The antidiabetic effect of WFRE was evaluated in mice with severe diabetes using oral administration of doses up to 400 mg/kg for 28 days. The results of the antidiabetic and antihyperglycemic tests indicate that WFRE possesses promising glucose-lowering effects and, as a result, it may serve as an antidiabetic alternative for long-term use. The 4-week treatments with different doses of plant extract did not alter the bodyweight appearance of the diabetic mice nor their biochemical parameters (AST and ALT). The findings obtained indicate that the studied plant extract controlled severe diabetes in mice. Therefore, Withania frutescens L. can serve society as it provides natural agents to control diabetes.


Author(s):  
Kalyani Patil ◽  
Farheen B. Khan ◽  
Sabah Akhtar ◽  
Aamir Ahmad ◽  
Shahab Uddin

AbstractThe ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lingyu Yang ◽  
Dehai Xian ◽  
Xia Xiong ◽  
Rui Lai ◽  
Jing Song ◽  
...  

Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerousin vitroandin vivostudies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.


2021 ◽  
Vol 13 (11) ◽  
pp. 5925
Author(s):  
Nuno Marques de Almeida ◽  
Maria João Falcão Silva ◽  
Filipa Salvado ◽  
Hugo Rodrigues ◽  
Damjan Maletič

The tangible and intangible value derived from the built environment is of great importance. This raises concerns related to the resilience of constructed assets to both human-made and natural disasters. Consideration of these concerns is present in the countless decisions made by various stakeholders during the decades-long life cycle of this type of physical asset. This paper addresses these issues from the standpoint of the engineering aspects that must be managed to enhance the structural safety and serviceability of buildings against natural disasters. It presents risk-informed performance-based parameterization strategies and evaluation criteria as well as design methods to embed differentiated levels of structural safety and serviceability of buildings against wind, snow, earthquakes and other natural agents. The proposed approach enables designers to assure the resilience and reliability of building structures against natural risks.


Author(s):  
Monika Elżbieta Jach ◽  
Anna Serefko
Keyword(s):  

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 135 ◽  
Author(s):  
Asfar S Azmi ◽  
Fazlul H Sarkar ◽  
SM Hadi

“Let food be thy medicine and medicine be thy food” was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating) behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document