Biological control in various cropping systems

2014 ◽  
pp. 11-31
2004 ◽  
Vol 31 (2) ◽  
pp. 86-91 ◽  
Author(s):  
D. T. Gooden ◽  
H. D. Skipper ◽  
J. H. Kim ◽  
K. Xiong

Abstract Rhizobacteria play an important role in sustainable agriculture via plant growth and biological control of pests in a number of ecosystems. Understanding the interactions of crop rotation and rhizobacteria on peanut production is a critical research need. Development of a database on the rhizobacteria obtained from continuous and rotational fields of peanut was initiated in 1997 and terminated in 2000. Peanut was planted in monoculture for 4 yr. In rotational plots, peanut, cotton, corn, and peanut were planted in sequence. Rhizobacteria were isolated from the roots of crop plants grown in a Norfolk soil near Florence, SC. These isolates were identified by composition of fatty acids from gas chromatography analysis (GC/FAME). Arthrobacter and Bacillus were the major genera from non-rhizosphere soils. At initiation of this study in July 1997, the plots selected for continuous peanut had more diversity in rhizobacteria than those plots selected for rotation. In July 2000, rhizobacteria diversity was greater from peanut roots in the rotation cropping system than continuous peanut. Even though rhizobacteria diversity was greater in the rotation system, higher peanut yields were recorded in the continuous peanut system in 2000. Burkholderia spp. were always isolated from the peanut and other crop rhizospheres at each sampling date.


2019 ◽  
Vol 109 (6) ◽  
pp. 794-811
Author(s):  
M. Garba ◽  
A. Loiseau ◽  
C. Tatard ◽  
L. Benoit ◽  
N. Gauthier

AbstractWhen a promising natural enemy of a key pest exists locally, it is a common practice in biological control (BC) to rear and release it for supplementary control in the targeted agroecosystem even though significant knowledge gaps concerning pre/post release may still exist. Incorporating genetic information into BC research fills some of these gaps. Habrobracon hebetor, a parasitoid of many economically important moths that infest stored and field crops worldwide is commonly used, particularly against the millet head miner (MHM), a key pest of millet in Sahelian countries. To advance our knowledge on how H. hebetor that occurs naturally in open-field cropping systems and grain stores as well as being mass-produced and released for MHM control, performs in millet agroecosystems in Niger we evaluated its population genetics using two mitochondrial and 21 microsatellite markers. The field samples were genetically more diverse and displayed heterozygote excess. Very few field samples had faced significant recent demographic bottlenecks. The mating system (i.e. nonrandom mating with complementary sex determination) of this species may be the major driver of these findings rather than bottlenecks caused by the small number of individuals released and the scarcity of hosts during the longlasting dry season in Niger. H. hebetor population structure was represented by several small patches and genetically distinct individuals. Gene flow occurred at local and regional scales through human-mediated and natural short-distance dispersal. These findings highlight the importance of the mating system in the genetic diversity and structure of H. hebetor populations, and contribute to our understanding of its reported efficacy against MHM in pearl millet fields.


Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 34 ◽  
Author(s):  
Ethel Monda ◽  
Joel Masanga ◽  
Amos Alakonya

Aflatoxins are carcinogenic chemical metabolites produced by Aspergillus spp. of the section Flavi. In Kenya, Aspergillus flavus is the most prevalent and has been associated with several acute and chronic aflatoxin outbreaks in the past. In this study, we evaluated the occurrence of A. flavus in soils from two agro-ecological regions with contrasting climatic conditions, aflatoxin contamination histories and cropping systems. Aspergillus spp. were first isolated from soils before the identification and determination of their aflatoxigenicity. Further, we determined the occurrence of Pseudomonas and Bacillus spp. in soils from the two regions. These bacterial species have long been associated with biological control of several plant pathogens including Aspergillus spp. Our results show that A. flavus occurred widely and produced comparatively higher total aflatoxin levels in all (100%) study sites from the eastern to the western regions of Kenya. For the western region, A. flavus was detected in 4 locations (66.7%) that were previously under maize cultivation with the isolates showing low aflatoxigenicity. A. flavus was not isolated from soils under sugarcane cultivation. Distribution of the two bacterial species varied across the regions but we detected a weak relationship between occurrence of bacterial species and A. flavus. We discuss these findings in the context of the influence of climate, microbial profiles, cropping systems and applicability in the deployment of biological control remedies against aflatoxin contamination.


1996 ◽  
Vol 11 (2-3) ◽  
pp. 104-107
Author(s):  
K. S. Pike ◽  
L. K. Tanigoshi

AbstractSix species of ophids (Homoptera: Aphididae) are the most economically significant insect pests of wheat in Washington. Management technologies under development or in use in Washington emphasize biorational approaches, including development and use of resistance germplasm, manipulation of pest populations through cropping systems, and development of biological controls. We review wheat yield losses caused by aphids, their biological control, and the effects of conservation tillage and systemic seed treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sandrine Fattore ◽  
Zhenggao Xiao ◽  
Adrienne L. Godschalx ◽  
Gregory Röder ◽  
Ted C. J. Turlings ◽  
...  

AbstractEntomopathogenic nematodes (EPNs) have been extensively studied as potential biological control agents against root-feeding crop pests. Maize roots under rootworm attack have been shown to release volatile organic compounds, such as (E)-β-caryophyllene (Eβc) that guide EPNs toward the damaging larvae. As yet, it is unknown how belowground ecosystems engineers, such as earthworms, affect the biological control capacity of EPNs by altering the root Eβc-mediated tritrophic interactions. We here asked whether and how, the presence of endogeic earthworms affects the ability of EPNs to find root-feeding larvae of the beetle Diabrotica balteata. First, we performed a field mesocosm experiment with two diverse cropping systems, and revealed that the presence of earthworms increased the EPN infection potential of larvae near maize roots. Subsequently, using climate-controlled, olfactometer-based bioassays, we confirmed that EPNs response to Eβc alone (released from dispensers) was two-fold higher in earthworm-worked soil than in earthworm-free soil. Together our results indicate that endogeic earthworms, through burrowing and casting activities, not only change soil properties in a way that improves soil fertility but may also enhance the biocontrol potential of EPNs against root feeding pests. For an ecologically-sound pest reduction in crop fields, we advocate agricultural practices that favour earthworm community structure and diversity.


2016 ◽  
Vol 232 ◽  
pp. 101-109 ◽  
Author(s):  
Aaron F. Fox ◽  
Tania N. Kim ◽  
Christine A. Bahlai ◽  
J. Megan Woltz ◽  
Claudio Gratton ◽  
...  

1988 ◽  
Vol 3 (2-3) ◽  
pp. 77-82 ◽  
Author(s):  
James H. Lashomb ◽  
William Metterhouse ◽  
Robert Chianese

AbstractThe U.S. public is expressing strong preference for the use of biological control methods in the management of U.S. agricultural, forest, and rangeland insect pests. This follows from a widespread understanding among citizens that synthetic insecticides have potentially harmful side effects on humans and that they are spreading increasingly as pollutants in the environment. Major recent increases in the number of pesticide-resistant insect species also put pressure on the agricultural community toward adoption of alternative non-agchemical plant and animal protection strategies. Movement in the direction of such alternatives has been facilitated by the fact that in the last two decades much progress has been made in Integrated Pest Management (IPM) through an improved understanding of the interactions of pests with their hosts. In that time period, many advances have been made in describing and predicting insect movement, seasonal cycles, and the effects of secondary plant compounds on insect reproduction. Simultaneously, much has been learned about the behavior, physiology, and population dynamics of insect parasitoids, i.e. parasites on insect pests. In the 1990's and subsequently, Biological Control Intensive Pest Management (BCIPM) will require continuing research to attain needed advancement in knowledge of growth and development of host plants, population dynamics of pests and parasitoids, and ecology of secondary pests that may interfere with implementation of BCIPM programs. Extension and research personnel will then be increasingly able to devise useful control methods for pests within selected cropping systems. We describe here examples to illustrate present and potential future use of BCIPM in different practical plant systems in New Jersey.


2006 ◽  
Vol 21 (4) ◽  
pp. 227-237 ◽  
Author(s):  
Jonathan G. Lundgren ◽  
John T. Shaw ◽  
Edmond R. Zaborski ◽  
Catherine E. Eastman

AbstractThe influence of farm management practices on ground-dwelling natural enemy communities and predation of insects and weed seeds was investigated over the first 2 years of the transition from conventional to organic production. Three transition strategies were selected that differed in their management and input intensities, and were characteristic of pasture/ley systems (low intensity), cash grain systems (intermediate intensity), and vegetable production (high intensity). Beneficial arthropods (insectivores and granivores) were monitored using pitfall (arthropod activity) and quadrat (arthropod density) samples. The frequency of predation on restrained larvae ofGalleria mellonellaand the species observed feeding were recorded. Weekly removal rates of weed seeds representative of abundant species at our site were monitored over a 3-week period during fall. Management intensity affected the activity and abundance of biological control agents. In year two of the transition, biological control agent densities were higher in the low-intensity treatment than in the other two treatments, but activity of insectivores and granivores was reduced in this treatment relative to the higher intensity systems. The patterns in the abundances of biological control agents may be explained by habitat stability within the different cropping systems. Quadrat samples were strongly correlated with the insectivory index, although pitfall samples were not. Insectivory rates were highest (>80% ofG. mellonellalarvae) in the low-intensity treatment. Predation patterns over a 17-h period differed substantially among the management treatments, indicating behaviorally distinct insectivore communities. Seed removal was also highest in the low-intensity treatment. We conclude that low-intensity cropping systems are most favorable to the abundance and function of beneficial ground-dwelling arthropod communities (insectivores and granivores) during the transition process.


Sign in / Sign up

Export Citation Format

Share Document