scholarly journals Akt Phosphorylation Is Not Sufficient for Insulin-Like Growth Factor-Stimulated Myogenin Expression but Must Be Accompanied by Down-Regulation of Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Phosphorylation

Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 4991-4996 ◽  
Author(s):  
Nicki Tiffin ◽  
Saleh Adi ◽  
David Stokoe ◽  
Nan-Yan Wu ◽  
Stephen M. Rosenthal

Abstract IGF-I has a unique biphasic effect on skeletal muscle differentiation. Initially, IGF-I inhibits expression of myogenin, a skeletal muscle-specific regulatory factor essential for myogenesis. Subsequently, IGF-I switches to stimulating expression of myogenin. The mechanisms that mediate this switch in IGF action are incompletely understood. Several laboratories have demonstrated that the phosphatidylinositol-3-kinase/Akt signaling pathway is essential for myogenic differentiation and have suggested that this pathway mediates IGF-I stimulation of myogenin mRNA expression, an early critical step in the differentiation process. These studies, however, did not address concurrent Akt and MAPK/ERK1/2 phosphorylation, the latter of which is also known to regulate myogenic differentiation. In the present study in rat L6E9 muscle cells, we have manipulated ERK1/2 phosphorylation with either an upstream inhibitor or activator and examined concurrent levels of Akt and ERK1/2 phosphorylation and of myogenin mRNA expression in response to treatment with IGF-I. We find that even in the presence of phosphorylated Akt, it is only when ERK1/2 phosphorylation is inhibited that IGF-I can stimulate myogenin mRNA expression. Thus, although Akt phosphorylation may be necessary, it is not sufficient for induction of myogenic differentiation by IGF-I and must be accompanied by a decrease in ERK1/2 phosphorylation.

2004 ◽  
Vol 63 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Yun Chau Long ◽  
Ulrika Widegren ◽  
Juleen R. Zierath

Exercise training improves glucose homeostasis through enhanced insulin sensitivity in skeletal muscle. Muscle contraction through physical exercise is a physiological stimulus that elicits multiple biochemical and biophysical responses and therefore requires an appropriate control network. Mitogen-activated protein kinase (MAPK) signalling pathways constitute a network of phosphorylation cascades that link cellular stress to changes in transcriptional activity. MAPK cascades are divided into four major subfamilies, including extracellular signal-regulated kinases 1 and 2, p38 MAPK, c-Jun NH2-terminal kinase and extracellular signal-regulated kinase 5. The present review will present the current understanding of parallel MAPK signalling in human skeletal muscle in response to exercise and muscle contraction, with an emphasis on identifying potential signalling mechanisms responsible for changes in gene expression.


2001 ◽  
Vol 281 (2) ◽  
pp. R561-R571 ◽  
Author(s):  
Jennifer A. Wong ◽  
Aidar R. Gosmanov ◽  
Edward G. Schneider ◽  
Donald B. Thomason

Na+-K+-Cl−cotransporter (NKCC) activity in quiescent skeletal muscle is modest. However, ex vivo stimulation of muscle for as little as 18 contractions (1 min, 0.3 Hz) dramatically increased the activity of the cotransporter, measured as the bumetanide-sensitive 86Rb influx, in both soleus and plantaris muscles. This activation of cotransporter activity remained relatively constant for up to 10-Hz stimulation for 1 min, falling off at higher frequencies (30-Hz stimulation for 1 min). Similarly, stimulation of skeletal muscle with adrenergic receptor agonists phenylephrine, isoproterenol, or epinephrine produced a dramatic stimulation of NKCC activity. It did not appear that stimulation of NKCC activity was a reflection of increased Na+-K+-ATPase activity because insulin treatment did not stimulate NKCC activity, despite insulin's well-known stimulation of Na+-K+-ATPase activity. Stimulation of NKCC activity could be blocked by pretreatment with inhibitors of mitogen-activated protein kinase (MAPK) kinase 1/2 (MEK1/2) activity, indicating that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) MAPKs may be required. These data indicate a regulated NKCC activity in skeletal muscle that may provide a significant pathway for potassium transport into skeletal muscle fibers.


2007 ◽  
Vol 86 (2) ◽  
pp. 186-191 ◽  
Author(s):  
S. Ogata ◽  
Y. Kubota ◽  
T. Yamashiro ◽  
H. Takeuchi ◽  
T. Ninomiya ◽  
...  

Interleukin-1α(IL-1α) stimulates the production of prostaglandin E2 (PGE2) in odontogenic keratocyst fibroblasts. However, the signaling pathways remain obscure. In this study, we investigated IL-1αsignaling pathways that regulate cyclooxygenase-2 (COX-2) expression in odontogenic keratocyst fibroblasts. IL-1αincreased the expression of COX-2 mRNA and protein, and PGE2 secretion in the fibroblasts. IL-1αincreased the phosphorylation of extracellular signal-regulated protein kinase-1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK). PD-98059, SB-203580, SP-600125, and PDTC—which are inhibitors of ERK1/2, p38, JNK, and nuclear factor-κB (NF-κB), respectively—attenuated the IL-1α-induced COX-2 mRNA expression and activated protein kinase C PGE2 secretion. IL-1α(PKC), and PKC inhibitor staurosporine inhibited IL-1α-induced phosphorylation of ERK1/2, p38, and JNK, and decreased IL-1α-induced COX-2 mRNA expression. Thus, in odontogenic keratocyst fibroblasts, IL-1αmay stimulate COX-2 expression both through the PKC-dependent activation of ERK1/2, p38, and JNK signaling pathways, and through the NF-κB cascade.


2018 ◽  
Vol 38 (24) ◽  
Author(s):  
Wei Fan ◽  
Xiu Kui Gao ◽  
Xi Sheng Rao ◽  
Yin Pu Shi ◽  
Xiao Ceng Liu ◽  
...  

ABSTRACT The regenerative process of injured muscle is dependent on the fusion and differentiation of myoblasts derived from muscle stem cells. Hsp70 is important for maintaining skeletal muscle homeostasis and regeneration, but the precise cellular mechanism remains elusive. In this study, we found that Hsp70 was upregulated during myoblast differentiation. Depletion or inhibition of Hsp70/Hsc70 impaired myoblast differentiation. Importantly, overexpression of p38 mitogen-activated protein kinase α (p38MAPKα) but not AKT1 rescued the impairment of myogenic differentiation in Hsp70- or Hsc70-depleted myoblasts. Moreover, Hsp70 interacted with MK2, a substrate of p38MAPK, to regulate the stability of p38MAPK. Knockdown of Hsp70 also led to downregulation of both MK2 and p38MAPK in intact muscles and during cardiotoxin-induced muscle regeneration. Hsp70 bound MK2 to regulate MK2-p38MAPK interaction in myoblasts. We subsequently identified the essential regions required for Hsp70-MK2 interaction. Functional analyses showed that MK2 is essential for both myoblast differentiation and skeletal muscle regeneration. Taken together, our findings reveal a novel role of Hsp70 in regulating myoblast differentiation by interacting with MK2 to stabilize p38MAPK.


2007 ◽  
Vol 75 (5) ◽  
pp. 2136-2142 ◽  
Author(s):  
Ranadhir Dey ◽  
Nivedita Majumder ◽  
Surajit Bhattacharjee ◽  
Suchandra Bhattacharyya Majumdar ◽  
Rajdeep Banerjee ◽  
...  

ABSTRACT Leishmania donovani is an intracellular protozoan parasite that impairs the host macrophage immune response to render it suitable for its survival and establishment. L. donovani-induced immunosuppression and alteration of host cell signaling is mediated by ceramide, a pleiotropic second messenger playing an important role in regulation of several kinases, including mitogen-activated protein kinase and phosphatases. We observed that the endogenous ceramide generated during leishmanial infection led to the dephosphorylation of protein kinase B (PKB) (Akt) in infected cells. The study of ceramide-mediated Akt phosphorylation revealed that Akt was dephosphorylated at both Thr308 and Ser473 sites in infected cells. Further investigation demonstrated that ceramide was also responsible for the induction of PKCζ, an atypical Ca-independent stress kinase, as well as the ceramide-activated protein phosphatases (e.g., protein phosphatase 2A [PP2A]). We found that Akt dephosphorylation was mediated by ceramide-induced PKCζ-Akt association and PP2A activation. In addition, treatment of L. donovani-infected macrophages with PKCζ-specific inhibitor peptide could restore the translocation of phosphorylated Akt to the cell membrane. This study also revealed that ceramide is involved in the inhibition of proinflammatory cytokine tumor necrosis factor alpha release by infected macrophages. These observations strongly suggest the importance of ceramide in the alteration of normal cellular functions, impairment of the kinase/phosphatase balance, and thereby establishment of leishmaniasis in the hostile macrophage environment.


2018 ◽  
Author(s):  
Akashi Sharma ◽  
Megha Agarwal ◽  
Amit Kumar ◽  
Pankaj Kumar ◽  
Masum Saini ◽  
...  

SummaryMyosin heavy chains (MyHCs) are contractile proteins that are part of the thick filaments of the functional unit of the skeletal muscle, the sarcomere. In addition to MyHCs that are part of the adult muscle contractile network, two MyHCs - MyHC-embryonic and -perinatal are expressed during muscle development and are only transiently expressed in the adult during regeneration. The functions performed by these MyHCs has been a long-standing question and using a targeted mouse allele, we have characterized the role of MyHC-embryonic. Analysis of loss-of-function mice reveals that lack of MyHC-embryonic leads to mis-regulation of other MyHCs, alterations in fiber size, fiber number and fiber type at neonatal stages. We also find that loss of MyHC-embryonic leads to mis-regulation of genes involved in muscle differentiation. A broad theme from these studies is that loss of MyHC-embryonic has distinct effects on different muscles, possibly reflecting the unique fiber type composition of different muscles. Most significantly, our results indicate that MyHC-embryonic is required during embryonic and fetal myogenesis to regulate myogenic progenitor and myoblast differentiation in a non-cell autonomous manner via Mitogen Activated Protein Kinase (MAPKinase) and Fibroblast Growth Factor (FGF) signaling. Thus, our results signify that MyHC-embryonic is a key regulator of myogenic differentiation during embryonic, fetal and neonatal myogenesis.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 182
Author(s):  
Stella Baliou ◽  
Maria Goulielmaki ◽  
Petros Ioannou ◽  
Christina Cheimonidi ◽  
Ioannis P. Trougakos ◽  
...  

Background: Taurine (Tau) ameliorates cancer pathogenesis. Researchers have focused on the functional properties of bromamine T (BAT), a stable active bromine molecule. Both N-bromotaurine (TauNHBr) and BAT exert potent anti-inflammatory properties, but the landscape remains obscure concerning the anti-cancer effect of BAT. Methods: We used Crystal Violet, colony formation, flow cytometry and Western blot experiments to evaluate the effect of BAT and Tau on the apoptosis and autophagy of cancer cells. Xenograft experiments were used to determine the in vivo cytotoxicity of either agent. Results: We demonstrated that both BAT and Tau inhibited the growth of human colon, breast, cervical and skin cancer cell lines. Among them, BAT exerted the greatest cytotoxic effect on both RKO and MDA-MB-468 cells. In particular, BAT increased the phosphorylation of c-Jun N-terminal kinases (JNK½), p38 mitogen-activated protein kinase (MAPK), and extracellular-signal-regulated kinases (ERK½), thereby inducing mitochondrial apoptosis and autophagy in RKO cells. In contrast, Tau exerted its cytotoxic effect by upregulating JNK½ forms, thus triggering mitochondrial apoptosis in RKO cells. Accordingly, colon cancer growth was impaired in vivo. Conclusions: BAT and Tau exerted their anti-tumor properties through the induction of (i) mitochondrial apoptosis, (ii) the MAPK family, and iii) autophagy, providing novel anti-cancer therapeutic modalities.


Sign in / Sign up

Export Citation Format

Share Document