scholarly journals Vitamin D Signaling Regulates Proliferation, Differentiation, and Myotube Size in C2C12 Skeletal Muscle Cells

Endocrinology ◽  
2014 ◽  
Vol 155 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Christian M. Girgis ◽  
Roderick J. Clifton-Bligh ◽  
Nancy Mokbel ◽  
Kim Cheng ◽  
Jenny E. Gunton

Vitamin D deficiency is linked to a range of muscle disorders including myalgia, muscle weakness, and falls. Humans with severe vitamin D deficiency and mice with transgenic vitamin D receptor (VDR) ablation have muscle fiber atrophy. However, molecular mechanisms by which vitamin D influences muscle function and fiber size remain unclear. A central question is whether VDR is expressed in skeletal muscle and is able to regulate transcription at this site. To address this, we examined key molecular and morphologic changes in C2C12 cells treated with 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D (1,25(OH)2D). As well as stimulating VDR expression, 25(OH)D and 1,25(OH)2D dose-dependently increased expression of the classic vitamin D target cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), demonstrating the presence of an autoregulatory vitamin D-endocrine system in these cells. Luciferase reporter studies demonstrated that cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) was functional in these cells. Both 25OHD and 1,25(OH)2D altered C2C12 proliferation and differentiation. These effects were related to the increased expression of genes involved in G0/G1 arrest (retinoblastoma protein [Rb], 1.3-fold; ATM, 1.5-fold, both P < .05), downregulation of mRNAs involved in G1/S transition, including myc and cyclin-D1 (0.7- and 0.8-fold, both P < .05) and reduced phosphorylation of Rb protein (0.3-fold, P < .005). After serum depletion, 1,25(OH)2D (100nM) suppressed myotube formation with decreased mRNAs for key myogenic regulatory factors (myogenin, 0.5-fold; myf5, 0.4-fold, P < .005) but led to a 1.8-fold increase in cross-sectional size of individual myotubes associated with markedly decreased myostatin expression (0.2-fold, P < .005). These data show that vitamin D signaling alters gene expression in C2C12 cells, with effects on proliferation, differentiation, and myotube size.

2014 ◽  
Vol 53 (3) ◽  
pp. 331-343 ◽  
Author(s):  
Ana P Irazoqui ◽  
Ricardo L Boland ◽  
Claudia G Buitrago

Previously, we have reported that 1,25(OH)2-vitamin D3(1,25D) activates p38 MAPK (p38) in a vitamin D receptor (VDR)-dependent manner in proliferative C2C12 myoblast cells. It was also demonstrated that 1,25D promotes muscle cell proliferation and differentiation. However, we did not study these hormone actions in depth. In this study we have investigated whether the VDR and p38 participate in the signaling mechanism triggered by 1,25D. In C2C12 cells, the VDR was knocked down by a shRNA, and p38 was specifically inhibited using SB-203580. Results from cell cycle studies indicated that hormone stimulation prompts a peak of S-phase followed by an arrest in the G0/G1-phase, events which were dependent on VDR and p38. Moreover, 1,25D increases the expression of cyclin D3 and the cyclin-dependent kinase inhibitors, p21Waf1/Cip1and p27Kip1, while cyclin D1 protein levels did not change during G0/G1 arrest. In all these events, p38 and VDR were required. At the same time, a 1,25D-dependent acute increase in myogenin expression was observed, indicating that the G0/G1 arrest of cells is a pro-differentiative event. Immunocytochemical assays revealed co-localization of VDR and cyclin D3, promoted by 1,25D in a p38-dependent manner. When cyclin D3 expression was silenced, VDR and myogenin levels were downregulated, indicating that cyclin D3 was required for 1,25D-induced VDR expression and the concomitant entrance into the differentiation process. In conclusion, the VDR and p38 are involved in control of the cellular cycle by 1,25D in skeletal muscle cells, providing key information on the mechanisms underlying hormone regulation of myogenesis.


2012 ◽  
Vol 34 (1) ◽  
pp. 33-83 ◽  
Author(s):  
Christian M. Girgis ◽  
Roderick J. Clifton-Bligh ◽  
Mark W. Hamrick ◽  
Michael F. Holick ◽  
Jenny E. Gunton

Abstract Beyond its established role in bone and mineral homeostasis, there is emerging evidence that vitamin D exerts a range of effects in skeletal muscle. Reports of profound muscle weakness and changes in the muscle morphology of adults with vitamin D deficiency have long been described. These reports have been supplemented by numerous trials assessing the impact of vitamin D on muscle strength and mass and falls in predominantly elderly and deficient populations. At a basic level, animal models have confirmed that vitamin D deficiency and congenital aberrations in the vitamin D endocrine system may result in muscle weakness. To explain these effects, some molecular mechanisms by which vitamin D impacts on muscle cell differentiation, intracellular calcium handling, and genomic activity have been elucidated. There are also suggestions that vitamin D alters muscle metabolism, specifically its sensitivity to insulin, which is a pertinent feature in the pathophysiology of insulin resistance and type 2 diabetes. We will review the range of human clinical, animal, and cell studies that address the impact of vitamin D in skeletal muscle, and discuss the controversial issues. This is a vibrant field of research and one that continues to extend the frontiers of knowledge of vitamin D's broad functional repertoire.


2021 ◽  
Vol 22 (10) ◽  
pp. 5145
Author(s):  
Giuseppe Schepisi ◽  
Caterina Gianni ◽  
Sara Bleve ◽  
Silvia De Padova ◽  
Cecilia Menna ◽  
...  

Testicular cancer (TC) is the most frequent tumor in young males. In the vast majority of cases, it is a curable disease; therefore, very often patients experience a long survival, also due to their young age at diagnosis. In the last decades, the role of the vitamin D deficiency related to orchiectomy has become an increasingly debated topic. Indeed, vitamin D is essential in bone metabolism and many other metabolic pathways, so its deficiency could lead to various metabolic disorders especially in long-term TC survivors. In our article, we report data from studies that evaluated the incidence of hypovitaminosis D in TC survivors compared with cohorts of healthy peers and we discuss molecular mechanisms and clinical implications.


2021 ◽  
Vol 27 ◽  
Author(s):  
Elahe Aleebrahim-Dehkordi ◽  
Niloofar Deravi ◽  
Shirin Yaghoobpoor ◽  
Dariush Hooshyar ◽  
Mahmoud Rafieian-Kopaei

Background: It is known that Vitamin D can increase the body’s immunity against some viral infections. Many people around the world have vitamin D deficiency and, therefore, this has become a public concern whether vitamin D is an important factor protecting against COVID-19 infection. In this paper, the data about the roles of vitamin D on immunity and recovery from viral infections, especially novel Coronavirus disease (COVID-19) is reviewed. Methods: The electronic databases of Pubmed, Google Scholar, Research Gate, Excerpta Media Database (EMBASE) and Medical and Health Education (Medrix) were searched. Results: Vitamin D is considered an important factor in immune homeostasis. Various effects have been considered for this nutrient on the immune system, particularly because of vitamin D receptor (VDR) and Cytochrome P450 Family 27 Subfamily B Member 1 (CYP27B1) expression in most of the immune cells. Vitamin D can raise cellular immunity, reduce cytokine storm and enhance antioxidants production. It also has modulatory effects on Angiotensin-converting enzyme 2 (ACE2) receptors and might have protective functions against acute lung injuries, including COVID-19 infection. However, there are some articles against this positive effect. Conclusion: Vitamin D supplementation is reported to be effective in the enhancement of the immune system and might be effective in the treatment and prevention of COVID-19 infection, especially in those with its deficiency. However, it should be considered that vitamin D deficiency shows the overall health status of the patients and cannot be considered specific for COVID-19 infection.


2020 ◽  
Author(s):  
Emma L Watson ◽  
Thomas J Wilkinson ◽  
Tom F O’Sullivan ◽  
Luke A Baker ◽  
Douglas W Gould ◽  
...  

AbstractEvidence is growing for a role of vitamin D in regulating skeletal muscle mass, strength and functional capacity. Given the role the kidneys play in activating total vitamin D, and the high prevalence of vitamin D deficiency in Chronic Kidney Disease (CKD), it is possible that deficiency contributes to the low levels of physical function and muscle mass in these patients. This is a secondary cross-sectional analysis of previously published interventional study, with ex vivo follow up work. 34 CKD patients at stages G3b-5 (eGFR 25.5 ± 8.3ml/min/1.73m2; age 61 ± 12 years) were recruited, with a sub-group (n=20) also donating a muscle biopsy. Vitamin D and associated metabolites were analysed in plasma by liquid chromatography tandem-mass spectroscopy and correlated to a range of physiological tests of muscle size, function, exercise capacity and body composition. The effects of 1α,25(OH)2D3 supplementation on myogenesis and myotube size was investigated in primary skeletal muscle cells from vitamin D deficient donors. In vivo, there was no association between total or active vitamin D and muscle size or strength, but a significant correlation with was seen with the total form. Ex vivo, 1α,25(OH)2D3 supplementation reduced IL-6 mRNA expression, but had no effect upon proliferation, differentiation or myotube diameter. This early preliminary work suggests that vitamin D deficiency is not a prominent factor driving the loss of muscle mass in CKD, but may play a role in reduced exercise capacity.


2011 ◽  
Vol 31 (39) ◽  
pp. 13728-13738 ◽  
Author(s):  
S. E. Tague ◽  
G. L. Clarke ◽  
M. K. Winter ◽  
K. E. McCarson ◽  
D. E. Wright ◽  
...  

2018 ◽  
Vol 27 (03) ◽  
pp. 129-134 ◽  
Author(s):  
B. M. Holzapfel ◽  
F. Jakob ◽  
A. A. Kurth ◽  
G. Maier ◽  
K. Horas

SummaryVitamin D deficiency is a global health problem of enormous and increasing dimensions. In the past decades, numerous studies have centered on the role of vitamin D in the pathogenesis and course of many diseases including several types of cancer. Indeed, vitamin D has been widely acknowledged to be involved in the regulation of cell proliferation, differentiation and apoptosis in numerous cancer cells. While the full range of molecular mechanisms involveld in cancer cell growth and progression remains to be elucidated, recent research has deepened our understanding of the processes that may be affected by vitamin D or vitamin D deficiency.In this review, we consider the properties of bone that enable cancer cells to grow and thrive within the skeleton, and the role of vitamin D and the vitamin D receptor in the process of primary and secondary cancer growth in bone.


2019 ◽  
Vol 38 (2) ◽  
pp. 676-681 ◽  
Author(s):  
Afsane Bahrami ◽  
Mehrane Mehramiz ◽  
Majid Ghayour-Mobarhan ◽  
Hamidreza Bahrami-Taghanaki ◽  
Kiana Sadeghi Ardekani ◽  
...  

2019 ◽  
Vol 8 (5) ◽  
pp. 694 ◽  
Author(s):  
Anna Jaśkiewicz ◽  
Beata Pająk ◽  
Magdalena Łabieniec-Watała ◽  
Clara De Palma ◽  
Arkadiusz Orzechowski

The present study is centered on molecular mechanisms of the cytoprotective effect of geranylgeraniol (GGOH) in skeletal muscle harmed by statin-associated myopathy (SAM). GGOH via autophagy induction was purportedly assumed to prevent skeletal muscle viability impaired by statins, atorvastatin (ATR) or simvastatin (SIM). The C2C12 cell line was used as the ‘in vitro’ model of muscle cells at different stages of muscle formation, and the effect of ATR or SIM on the cell viability, protein expression and mitochondrial respiration were tested. Autophagy seems to be important for the differentiation of muscle cells; however, it did not participate in the observed GGOH cytoprotective effects. We showed that ATR- and SIM-dependent loss in cell viability was reversed by GGOH co-treatment, although GGOH did not reverse the ATR-induced drop in the cytochrome c oxidase protein expression level. It has been unambiguously revealed that the mitochondria of C2C12 cells are not sensitive to SIM, although ATR effectively inhibits mitochondrial respiration. GGOH restored proper mitochondria functioning. Apoptosis might, to some extent, explain the lower viability of statin-treated myotubes as the pan-caspase inhibitor, N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone (Z-VAD-FMK), partly reversed ATR- or SIM-induced cytotoxic effects; however, it does not do so in conjunction with caspase-3. It appears that the calpain inhibitor, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLM), restored the viability that was reduced by ATR and SIM (p < 0.001). GGOH prevents SAM, in part, as a consequence of a caspase-3 independent pathway, probably by calpain system inactivation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nandini Ghosh ◽  
Amitava Das ◽  
Nirupam Biswas ◽  
Surya Gnyawali ◽  
Kanhaiya Singh ◽  
...  

AbstractUrolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12–16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.


Sign in / Sign up

Export Citation Format

Share Document