Adipose Tissue Expression of Genes Coding for Prostaglandin Synthesis Enzymes and Receptors in Women

2011 ◽  
pp. P2-446-P2-446
Author(s):  
Andreanne Michaud ◽  
Suzanne Noel ◽  
Gaetan Paris ◽  
Van Luu-The ◽  
Michel A Fortier ◽  
...  
2014 ◽  
Vol 99 (12) ◽  
pp. E2518-E2528 ◽  
Author(s):  
Marie-Soleil Gauthier ◽  
Joelle R. Pérusse ◽  
Marie-Ève Lavoie ◽  
Robert Sladek ◽  
S. R. Murthy Madiraju ◽  
...  

2020 ◽  
Vol 28 ◽  
Author(s):  
Seyed Mohammad Nabavi ◽  
Kasi Pandima Devi ◽  
Sethuraman Sathya ◽  
Ana Sanches-Silva ◽  
Listos Joanna ◽  
...  

: Obesity is a major health concern for a growing fraction of the population, with the prevalence of obesity and its related metabolic disorders not being fully understood. Over the last decade, many attempts have been undertaken to understand the mechanisms at the basis of this condition, in which the accumulation of fat occurring in adipose tissue, leads to the pathogenesis of obesity related disorders. Among the most recent studies, those on Peroxisome Proliferator Activated Receptors (PPARs) revealed that these nuclear receptor proteins acting as transcription factors, among others, regulate the expression of genes involved in energy, lipid, and glucose metabolisms, and chronic inflammation. The three different isotypes of PPARs, with different tissue expression and ligand binding specificity, exert similar or overlapping functions directly or indirectly linked to obesity. In this study, we reviewed the available scientific reports concerning the PPARs structure and functions, especially in obesity, considering both natural and synthetic ligands and their role in the therapy of obesity and obesity-associated disorders. In the whole, the collected data show that there are both natural and synthetic compounds that show beneficial promising activity as PPAR agonists in chronic diseases related to obesity.


Author(s):  
Mohammadreza Ebrahimzade ◽  
Mohammad Mirdoraghi ◽  
Ameneh Alikarami ◽  
Sahar Heidari ◽  
Tayebeh Rastegar ◽  
...  

Background: Reducing the healing time of wounds can decrease the patient`s immobility time and their medical costs,leading a faster return of the patients to daily work. Objective: To compare the effect of adipose-derived stem cells and curcumin-containing liposomal nanoparticles with phenytoin on wound healing. Method: After anesthesia of the rats, open skin ulcers were made by a bistoury blade.Subsequently,stem cells were re-moved from the adipose tissue of theupper border of the epididymis. Then,the originality of stem cells was confirmed by the flow cytometry. The fusion method was used to prepare the liposome;and also nanoliposomal particles wereconfirmedby using the DLS microscope.The percentage of recovery and the cell count was measured with IMAGEJ.The expression of genes was assessed by PCR. The number of fibro blasts was counted by immuno histo chemistry techniques.The amount of collagen was determined by Tri-chromosome staining and the number of capillaries was enumerated byH & E staining. Results: The expression of TGF-β1 gene, vascular number, wound healing rate and the numberof fibroblasts increased significantly in adipose tissue-derived stem cells and curcumin nanoliposome groups(p<0.05);the wound surface was also decreased significantly(p<0.05). Conclusion: Based on the results of our research, adipose tissue-derived stem cells and curcumin nanoliposomescan heal wounds efficiently.


2012 ◽  
Vol 7 (2) ◽  
pp. 192-200
Author(s):  
Jacek Turyn ◽  
Adriana Mika ◽  
Piotr Stepnowski ◽  
Julian Swierczynski

AbstractIt is generally accepted that the location of body fat deposits may play an important role in the risk of developing some endocrine and metabolic diseases. We have studied the effect of food restriction and food restriction/refeeding, often practiced by individuals trying to lose body weight, on the expression of genes which are associated with obesity and certain metabolic disorders in inguinal, epididymal, and perirenal rat white adipose tissues. Gene expression was analyzed by real time semi-quantitative polymerase chain reaction and by Western blot. We found that prolonged food restriction caused a significant decrease of body and adipose tissue mass as well as the increase of Scd1 and Elovl6 gene expressions in all main rat adipose tissue deposits. Food restriction/refeeding caused increases of: a) Scd1 and Elovl6 mRNA levels in adipose tissue, b) Scd1 protein level and c) desaturation index in adipose tissue. The increased expression of both genes was unusually high in inguinal adipose tissue. The results suggest that the increase of Scd1 and Elovl6 gene expressions in white adipose tissue by prolonged food restriction and prolonged food restriction/refeeding may contribute to accelerated fat recovery that often occurs in individuals after food restriction/refeeding.


2010 ◽  
Vol 122 (1-3) ◽  
pp. 28-34 ◽  
Author(s):  
Alain Veilleux ◽  
Philippe Y. Laberge ◽  
Jacques Morency ◽  
Suzanne Noël ◽  
Van Luu-The ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carmen P. Wong ◽  
Urszula T. Iwaniec ◽  
Russell T. Turner

AbstractSixteen-week-old female C57BL/6J mice were sacrificed aboard the International Space Station after 37 days of flight (RR-1 mission) and frozen carcasses returned to Earth. RNA was isolated from interscapular brown adipose tissue (BAT) and gonadal white adipose tissue (WAT). Spaceflight resulted in differential expression of genes in BAT consistent with increased non-shivering thermogenesis and differential expression of genes in WAT consistent with increased glucose uptake and metabolism, adipogenesis, and β-oxidation.


Sign in / Sign up

Export Citation Format

Share Document