scholarly journals Mutational Profile of Metastatic Pheochromocytoma and Paraganglioma

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A71-A71
Author(s):  
Yun Mi Choi ◽  
Jinyeong Lim ◽  
Min Ji Jeon ◽  
Yu-Mi Lee ◽  
Tae-Yon Sung ◽  
...  

Abstract Background: In pheochromocytoma and paraganglioma (PPGL), germline and somatic mutations in one of the known susceptibility genes are present in about 60% of tumors. However, the genetic events that drive the malignant progression of the disease are yet poorly understood. We aimed to evaluate the mutational profiles of metastatic PPGLs by targeted next-generation sequencing (NGS) to characterize the genetic events in metastatic PPGLs. Methods: Among the previously reported metastatic PPGL series from Asan Medical Center (AMC), Seoul, Korea, fifteen patients with available formalin-fixed, paraffin embedded (FFPE) archival samples for targeted exome sequencing were enrolled in this study. We also analyzed accessible data of aggressive PPGLs from The Cancer Genome Atlas (TCGA) and compared with findings of AMC samples. Results: A total of 115 germline and 34 somatic variants were identified in AMC cohort. Tumors of AMC cohort had median 0.58 per megabase tumor mutation burden. Most frequently mutated mutations were SDHB germline mutation (27%), and SETD2, NF1, HRAS somatic mutations (13%). Genes are subtyped into pseudohypoxia group (n=5), kinase group (n=5) and unknown (n=5) group. In unknown subgroup, two samples showed ATRX mutations and one accompanied SETD2 mutation. In copy number variation analysis, the most frequently observed pattern was deletion of 1p arm where SDHB is present. In survival analysis, SDHB mutation and pseudohypoxia subtype was significantly associated with poor prognosis. Conclusion: The analysis of NGS from patients with metastatic PPGLs demonstrated rare genetic events as well as well-known mutations. The pseudohypoxia subtype presented poor prognosis than kinase or unknown subtypes. Subjects who had no deletion in 1p arm showed favorable treatment response. Further studies to discover driver events and markers of metastasis are warranted.

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2389
Author(s):  
Yun Mi Choi ◽  
Jinyeong Lim ◽  
Min Ji Jeon ◽  
Yu-Mi Lee ◽  
Tae-Yon Sung ◽  
...  

In pheochromocytoma and paraganglioma (PPGL), germline or somatic mutations in one of the known susceptibility genes are identified in up to 60% patients. However, the peculiar genetic events that drive the aggressive behavior including metastasis in PPGL are poorly understood. We performed targeted next-generation sequencing analysis to characterize the mutation profile in fifteen aggressive PPGL patients and compared accessible data of aggressive PPGLs from The Cancer Genome Atlas (TCGA) with findings of our cohort. A total of 115 germline and 34 somatic variants were identified with a median 0.58 per megabase tumor mutation burden in our cohort. The most frequent mutation was SDHB germline mutation (27%) and the second frequent mutations were somatic mutations for SETD2, NF1, and HRAS (13%, respectively). Patients were subtyped into three categories based on the kind of mutated genes: pseudohypoxia (n = 5), kinase (n = 5), and unknown (n = 5) group. In copy number variation analysis, deletion of chromosome arm 1p harboring SDHB gene was the most frequently observed. In our cohort, SDHB mutation and pseudohypoxia subtype were significantly associated with poor overall survival. In conclusion, subtyping of mutation profile can be helpful in aggressive PPGL patients with heterogeneous prognosis to make relevant follow-up plan and achieve proper treatment.


2020 ◽  
pp. jmedgenet-2020-107083
Author(s):  
Ying Ding ◽  
Yang Shao ◽  
Chenglong Na ◽  
Jiani C Yin ◽  
Hongjin Hua ◽  
...  

BackgroundSarcomatoid component occurs in various epithelial malignancies and is associated with an aggressive disease course and poor clinical outcome. As it is largely rare, the molecular events underlying sarcomatoid carcinomas (SCs) remain poorly characterised. Here, we performed targeted next-generation sequencing (NGS) on patients with surgically resected SCs comprising distinct tissues of origin.MethodsA total of 71 patients with pathological diagnosis of sarcomatoid carcinomas and underwent surgery were retrospectively enrolled in this study. Overall survival (OS) was defined as the time from surgery to death from any cause. Patients alive or lost to follow-up were censored. Genomic DNA from formalin-fixed paraffin-embedded samples was extracted for NGS and tumour mutation burden (TMB) analysis.ResultsIn general, SCs occurred more commonly in males, except those of the gallbladder. SCs of the lung and the larynx were associated with a higher proportion of smokers (p=0.0015). Alterations in TP53, RB1, TERT and KRAS were highly frequent, with KRAS mutations being a biomarker of poor prognosis (median OS=8 vs 16 months, p=0.03). Multiple alterations in potentially actionable genes, including ROS1 and NTRK1 fusions and ERBB2 amplification, were detected in the extra-pulmonary cohort. A relatively high proportion (30%) of patients with extra-pulmonary SC had high TMB, with a median of 5.39 mutations per Mb. Lastly, copy number variations were common in SCs, and were non-overlapping between the primary and metastatic tumours.ConclusionTaken together, our results suggest that comprehensive genetic testing may be necessary to inform treatment options and identify prognostic biomarkers.


2020 ◽  
Vol 105 (11) ◽  
Author(s):  
Kazutaka Nanba ◽  
Yuto Yamazaki ◽  
Nolan Bick ◽  
Kei Onodera ◽  
Yuta Tezuka ◽  
...  

Abstract Context Results of previous studies demonstrated clear racial differences in the prevalence of somatic mutations among patients with aldosterone-producing adenoma (APA). For instance, those in East Asian countries have a high prevalence of somatic mutations in KCNJ5, whereas somatic mutations in other aldosterone-driving genes are rare. Objectives To determine somatic mutation prevalence in Japanese APA patients using an aldosterone synthase (CYP11B2) immunohistochemistry (IHC)-guided sequencing approach. Method Patients with a unilateral form of primary aldosteronism who underwent adrenalectomy at the Tohoku University Hospital were studied. Based on CYP11B2 immunolocalization of resected adrenals, genomic DNA was isolated from the relevant positive area of 10% formalin-fixed, paraffin-embedded tissue of the APAs. Somatic mutations in aldosterone-driving genes were studied in APAs by direct Sanger sequencing and targeted next-generation sequencing. Results CYP11B2 IHC-guided sequencing determined APA-related somatic mutations in 102 out of 106 APAs (96%). Somatic KCNJ5 mutation was the most frequent genetic alteration (73%) in this cohort of Japanese patients. Somatic mutations in other aldosterone-driving genes were also identified: CACNA1D (14%), ATP1A1 (5%), ATP2B3 (4%), and CACNA1H (1%), including 2 previously unreported mutations. KCNJ5 mutations were more often detected in APAs from female patients compared with those from male patients [95% (36/38) vs 60% (41/68); P < 0.0001]. Conclusion IHC-guided sequencing defined somatic mutations in over 95% of Japanese APAs. While the dominance of KCNJ5 mutations in this particular cohort was confirmed, a significantly higher KCNJ5 prevalence was detected in female patients. This study provides a better understanding of genetic spectrum of Japanese APA patients.


2016 ◽  
Vol 175 (2) ◽  
pp. K1-K6 ◽  
Author(s):  
Kazutaka Nanba ◽  
Kei Omata ◽  
Scott A Tomlins ◽  
Thomas J Giordano ◽  
Gary D Hammer ◽  
...  

Objective Co-secretion of cortisol and aldosterone can be observed in adrenal adenomas. The aim of this study was to investigate the molecular characteristics of a co-existing aldosterone- and a cortisol-producing adenoma (CPA) in the same patient. Design and methods Two different adenomas within the same adrenal gland from a 49-year-old female patient with primary aldosteronism (PA) and Cushing's syndrome (CS) were studied. Multiple formalin-fixed paraffin-embedded tumor blocks were used for the analysis. Immunohistochemistry (IHC) was performed using a specific antibody against aldosterone synthase (CYP11B2). DNA and RNA were isolated separately from CYP11B2-positive and -negative tumor regions based on CYP11B2 IHC results. Results CYP11B2 IHC clearly demonstrated that three pieces from one adenoma were positive for CYP11B2 and the remaining three from the other adenoma were negative for CYP11B2. In quantitative real-time RT-PCR, CYP11B2 mRNA was upregulated in CYP11B2-positive tumor specimens (219-fold vs CYP11B2-negative tumor specimens). Targeted next-generation sequencing (NGS) detected novel KCNJ5 gene mutations (p.T148I/T149S, present in the same reads) and a PRKACA gene hotspot mutation (p.L206R) in the CYP11B2-positive and -negative tumors, respectively. Sanger sequencing of DNA from each tumor specimen (CYP11B2-positive tumor, n=3; CYP11B2-negative tumor, n=3) showed concordant results with targeted NGS. Conclusion Our findings illustrate the co-existence of two different adrenocortical adenomas causing the concurrent diagnosis of PA and CS in the same patient. Molecular analysis was able to demonstrate that the two diseases resulted from independent somatic mutations seen in double adrenocortical adenomas.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e17529-e17529
Author(s):  
Wei He ◽  
Fukang Sun ◽  
Juping Zhao ◽  
Dai Jun ◽  
Le Xu ◽  
...  

e17529 Background: Prostate cancer (PCa) is one of the most common malignancies, with rising incidence rate in China. The Cancer Genome Atlas (TCGA) revealed 53% of patients with PCa had ETS family gene fusions. The most frequent fusion type of ETS fusions is TMPRSS2-ERG, which may predicts resistance to taxane and androgen-deprivation therapies. The prevalence of TMPRSS2-ERG fusion in Chinese PCa patients evaluated by fluorescence in situ hybridization (FISH) or immunohistochemistry (IHC) varied from 7.5% to 78.0%. However, the sample sizes were small. In the present study, we investigated the prevalence and genetic features of TMPRSS2-ERG fusion by next generation sequencing (NGS) in a larger Chinese PCa cohort. Methods: Genomic profiling was performed through NGS from Chinese patients with PCa between January, 2017 and November, 2019. Formalin fixed paraffin-embedded (FFPE) tumor specimens or blood samples from participants were collected for NGS. IHC staining for PD-L1 expression was performed using PD-L1 IHC 22C3 pharmDx assay or Ventana PD-L1 SP263 assay. Data analyses were performed using SPSS and R 3.6.1. Results: A total of 526 Chinese PCa patients were included in this study. The median age was 70 (range, 29-90) years old. We observed 13.1% patients with a positive PD-L1 expression, 3.0% patients with MSI-H, and a median TMB of 4.0 muts/Mb (range: 0-72.9). TMPRSS2 fusions were detected in 47 (8.9%) PCa patients, and 6.8% of patients had TMPRSS2-ERG fusion, which is significantly lower than that of Caucasian patients. The PD-L1 expression pattern and TMB distribution of the TMPRSS2-ERG fusion-positive patients were similar with TMPRSS2-ERG fusion-negative patients, however no fusion-positive patients were identified as MSI-H. Among these 36 TMPRSS2-ERG fusion-positive patients, the most frequently somatic mutations were detected in TP53 (38.9%), AR (11.1%), ATM (11.1%), and PTEN (11.1%). 9 (22.2%) patients harbored somatic mutations in PI3K/ AKT/mTOR pathway that has been previously demonstrated to collaborate with ERG to promote prostate cancer progression. Conclusions: This study revealed the prevalence and genetic features of TMPRSS2-ERG fusion in Chinese PCa patients by NGS in the first time. Our results provide a better understanding of molecular features in Chinese TMPRSS2-ERG fusion-positive PCa patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dejun Wu ◽  
Zhenhua Yin ◽  
Yisheng Ji ◽  
Lin Li ◽  
Yunxin Li ◽  
...  

AbstractLncRNAs play a pivotal role in tumorigenesis and development. However, the potential involvement of lncRNAs in colon adenocarcinoma (COAD) needs to be further explored. All the data used in this study were obtained from The Cancer Genome Atlas database, and all analyses were conducted using R software. Basing on the seven prognosis-related lncRNAs finally selected, we developed a prognosis-predicting model with powerful effectiveness (training cohort, 1 year: AUC = 0.70, 95% Cl = 0.57–0.78; 3 years: AUC = 0.71, 95% Cl = 0.6–0.8; 5 years: AUC = 0.76, 95% Cl = 0.66–0.87; validation cohort, 1 year: AUC = 0.70, 95% Cl = 0.58–0.8; 3 years: AUC = 0.73, 95% Cl = 0.63–0.82; 5 years: AUC = 0.68, 95% Cl = 0.5–0.85). The VEGF and Notch pathway were analyzed through GSEA analysis, and low immune and stromal scores were found in high-risk patients (immune score, cor =  − 0.15, P < 0.001; stromal score, cor =  − 0.18, P < 0.001) , which may partially explain the poor prognosis of patients in the high-risk group. We screened lncRNAs that are significantly associated with the survival of patients with COAD and possibly participate in autophagy regulation. This study may provide direction for future research.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2487
Author(s):  
Chao Gao ◽  
Guangxu Jin ◽  
Elizabeth Forbes ◽  
Lingegowda S. Mangala ◽  
Yingmei Wang ◽  
...  

IK is a mitotic factor that promotes cell cycle progression. Our previous investigation of 271 endometrial cancer (EC) samples from the Cancer Genome Atlas (TCGA) dataset showed IK somatic mutations were enriched in a cluster of patients with high-grade and high-stage cancers, and this group had longer survival. This study provides insight into how IK somatic mutations contribute to EC pathophysiology. We analyzed the somatic mutational landscape of IK gene in 547 EC patients using expanded TCGA dataset. Co-immunoprecipitation and mass spectrometry were used to identify protein interactions. In vitro and in vivo experiments were used to evaluate IK’s role in EC. The patients with IK-inactivating mutations had longer survival during 10-year follow-up. Frameshift and stop-gain were common mutations and were associated with decreased IK expression. IK knockdown led to enrichment of G2/M phase cells, inactivation of DNA repair signaling mediated by heterodimerization of Ku80 and Ku70, and sensitization of EC cells to cisplatin treatment. IK/Ku80 mutations were accompanied by higher mutation rates and associated with significantly better overall survival. Inactivating mutations of IK gene and loss of IK protein expression were associated with weakened Ku80/Ku70-mediated DNA repair, increased mutation burden, and better response to chemotherapy in patients with EC.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 158
Author(s):  
Valentina Condelli ◽  
Giovanni Calice ◽  
Alessandra Cassano ◽  
Michele Basso ◽  
Maria Grazia Rodriquenz ◽  
...  

Epigenetics is involved in tumor progression and drug resistance in human colorectal carcinoma (CRC). This study addressed the hypothesis that the DNA methylation profiling may predict the clinical behavior of metastatic CRCs (mCRCs). The global methylation profile of two human mCRC subgroups with significantly different outcome was analyzed and compared with gene expression and methylation data from The Cancer Genome Atlas COlon ADenocarcinoma (TCGA COAD) and the NCBI GENE expression Omnibus repository (GEO) GSE48684 mCRCs datasets to identify a prognostic signature of functionally methylated genes. A novel epigenetic signature of eight hypermethylated genes was characterized that was able to identify mCRCs with poor prognosis, which had a CpG-island methylator phenotype (CIMP)-high and microsatellite instability (MSI)-like phenotype. Interestingly, methylation events were enriched in genes located on the q-arm of chromosomes 13 and 20, two chromosomal regions with gain/loss alterations associated with adenoma-to-carcinoma progression. Finally, the expression of the eight-genes signature and MSI-enriching genes was confirmed in oxaliplatin- and irinotecan-resistant CRC cell lines. These data reveal that the hypermethylation of specific genes may provide prognostic information that is able to identify a subgroup of mCRCs with poor prognosis.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Seung Won Choi ◽  
Yeri Lee ◽  
Kayoung Shin ◽  
Harim Koo ◽  
Donggeon Kim ◽  
...  

AbstractPTEN is one of the most frequently altered tumor suppressor genes in malignant tumors. The dominant-negative effect of PTEN alteration suggests that the aberrant function of PTEN mutation might be more disastrous than deletion, the most frequent genomic event in glioblastoma (GBM). This study aimed to understand the functional properties of various PTEN missense mutations and to investigate their clinical relevance. The genomic landscape of PTEN alteration was analyzed using the Samsung Medical Center GBM cohort and validated via The Cancer Genome Atlas dataset. Several hotspot mutations were identified, and their subcellular distributions and phenotypes were evaluated. We established a library of cancer cell lines that overexpress these mutant proteins using the U87MG and patient-derived cell models lacking functional PTEN. PTEN mutations were categorized into two major subsets: missense mutations in the phosphatase domain and truncal mutations in the C2 domain. We determined the subcellular compartmentalization of four mutant proteins (H93Y, C124S, R130Q, and R173C) from the former group and found that they had distinct localizations; those associated with invasive phenotypes (‘edge mutations’) localized to the cell periphery, while the R173C mutant localized to the nucleus. Invasive phenotypes derived from edge substitutions were unaffected by an anti-PI3K/Akt agent but were disrupted by microtubule inhibitors. PTEN mutations exhibit distinct functional properties regarding their subcellular localization. Further, some missense mutations (‘edge mutations’) in the phosphatase domain caused enhanced invasiveness associated with dysfunctional cytoskeletal assembly, thus suggesting it to be a potent therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document