scholarly journals The Ratio of Unsaturated to Saturated Fatty Acids is a Distinguishing Feature of NAFLD in Subjects With Metabolic Disease

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A421-A421
Author(s):  
John N Falcone ◽  
Maurice A Hurd ◽  
Sonal Kumar ◽  
Michele Yeung ◽  
Carolyn Newberry ◽  
...  

Abstract Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver disease affecting at least a quarter of the world’s population. NAFLD is commonly associated with other metabolic conditions such as insulin resistance, type 2 diabetes, obesity, and dyslipidemia. Given the liver’s prominent role in regulating glucose and lipid homeostasis, we hypothesized that subjects with NAFLD have a distinct profile of blood analytes. This investigation examines the association between NAFLD and circulating markers of glucose and lipid metabolism in order to identify a NAFLD-specific metabolite panel that can be used as a predictive biomarker in future studies. We are performing a cross-sectional study in 500 subjects to identify genetic and hormonal factors that correlate with the presence of NAFLD. This abstract reports a preliminary analysis of the results from the first 45 subjects enrolled. Fasting blood samples were collected from 31 subjects with NAFLD and 14 subjects with other metabolic diseases (‘Other’) and without radiologic evidence of NAFLD. The following analytes were measured: serum alanine aminotransferase (ALT), total cholesterol, direct-LDL, HDL, triglycerides, ApoB, small dense LDL-C (sdLDL), VLDL, Lp(a), cholesterol absorption/production markers (beta-sitosterol, campesterol, lathosterol, and desmosterol), glucose, insulin, hemoglobin A1C, adiponectin, hs-CRP, and fatty acids (saturated and unsaturated). Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from glucose and insulin levels, and fatty acids were batched together by structural similarity and reported as indices. The groups were compared using multiple t-tests or the Kolmogorov-Smirnov test when data were non-parametric. The NAFLD group had a mean age 48.4 ± 12.9 yrs and BMI 32.9 ± 6.6 kg/m2. These participants were 61% female and 58% had dyslipidemia, 25% pre-diabetes, and 25% type 2 diabetes. The Other group had a mean age 49.9 ± 12.9 yrs and BMI 39.1 ± 15.6 kg/m2. They were 64% female and 57% had dyslipidemia, 14% pre-diabetes, and 21% type 2 diabetes. ALT was higher in the NAFLD group (55 ± 40 vs 27 ± 22 IU/L, P<0.001). Intriguingly, the saturated fatty acid index was elevated in the NAFLD group (32.5 ± 1.9 vs 30.1 ± 2.2 %, P<0.05), and the omega-6 fatty acid index was elevated in the Other group (42.9 ± 3.7 vs 38.5 ± 4.7 %, P<0.05). These changes led to an unsaturated/saturated fatty acid ratio that was significantly lower in the NAFLD group (2.0 ± 0.1 vs 2.3 ± 0.2, P<0.01). There were no other significant differences in the blood metabolites and hormones. In this small sample comparing subjects with metabolic disease with and without NAFLD, levels of ALT and the ratio of circulating unsaturated/saturated fatty acids are distinguishing features of NAFLD. These may be helpful measures to identify subjects with metabolic disease that require further evaluation for NAFLD.

2013 ◽  
Vol 17 (6) ◽  
pp. 1337-1341 ◽  
Author(s):  
Catherine Paquet ◽  
Sarah L Propsting ◽  
Mark Daniel

AbstractObjectiveThe present study sought to investigate the associations of totaln-3 fatty acid and SFA intakes with insulin resistance in a Canadian First Nation sample at risk for type 2 diabetes.DesignFasting values for glucose and insulin were used to estimate insulin resistance by homeostasis model assessment (HOMA-IR). Intakes ofn-3 fatty acids and SFA were computed from dietary food and drink data obtained using 3 d food records. Associations between HOMA-IR and dietaryn-3 and SFA consumption were tested using linear regression models accounting for age, sex, community, education, physical activity, waist circumference, fibre, protein and carbohydrate intakes, and HDL-cholesterol and TAG concentrations.SettingRural Okanagan region of British Columbia, Canada.SubjectsOn-reserve First Nation individuals (Interior Salishan) aged 18 years and over, recruited for community-based diabetes screening and determined to be normoglycaemic (n126).ResultsHOMA-IR was negatively associated with dietaryn-3 fatty acid intake (β= −0·22; 95 % CI −0·39, −0·04;P= 0·016) and positively associated with dietary SFA intake (β= 0·34; 95 % CI 0·15, 0·53;P= 0·0 0 1).ConclusionsIntake of dietaryn-3 fatty acids may be protective against whereas SFA intake may promote insulin resistance in this high-risk Canadian First Nation sample. Reduced dietary SFA intake and greatern-3 fatty acid intake may assist the prevention of glycaemic disease among First Nations peoples. More rigorous, controlled trials are required to test whether dietary supplementation withn-3 fatty acids in natural or supplement-based form might reduce diabetes risk in high-risk aboriginal groups.


2000 ◽  
Vol 83 (S1) ◽  
pp. S169-S172 ◽  
Author(s):  
Jim I. Mann

Insulin sensitivity is potentially enhanced by a range of diet-related changes including reduction of visceral adiposity, a reduction in saturated fatty acids, and possibly a redistribution of the proportions of various unsaturated fatty acids. While there is evidence to suggest that lifestyle changes can reduce the risk of progression of impaired glucose tolerance to type 2 diabetes, there are no clinical trials which have conclusively demonstrated that any measure can reduce insulin resistance in the long term to an extent that can prevent the development of type 2 diabetes and other clinical complications. Evidence concerning the possibilities for reducing visceral adiposity and altering the nature of dietary fat are therefore considered. Attempts to achieve prolonged and substantial weight reduction in adults have not been encouraging, and it may be that preventing further weight gain is the most realistic target in this age group. In childhood the attempts have been more successful. The development of new approaches to achieving behavioural change and an environment which facilitates physical activity and appropriate food choices will be essential for more successful individual and population attempts to facilitate reduction in insulin resistance by weight loss. Changes in the nature of dietary fat appear to be more easily achieved. This is already a component of dietary advice aimed at cardiovascular risk reduction, and should be reinforced now with a view to also achieving a reduction in insulin resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ban-Hock Khor ◽  
◽  
Sharmela Sahathevan ◽  
Ayesha Sualeheen ◽  
Mohammad Syafiq Md Ali ◽  
...  

AbstractThe metabolic impact of circulating fatty acids (FAs) in patients requiring hemodialysis (HD) is unknown. We investigated the associations between plasma triglyceride (TG) FAs and markers of inflammation, insulin resistance, nutritional status and body composition. Plasma TG-FAs were measured using gas chromatography in 341 patients on HD (age = 55.2 ± 14.0 years and 54.3% males). Cross-sectional associations of TG-FAs with 13 markers were examined using multivariate linear regression adjusted for potential confounders. Higher levels of TG saturated fatty acids were associated with greater body mass index (BMI, r = 0.230), waist circumference (r = 0.203), triceps skinfold (r = 0.197), fat tissue index (r = 0.150), serum insulin (r = 0.280), and homeostatic model assessment of insulin resistance (r = 0.276), but lower malnutrition inflammation score (MIS, r =  − 0.160). Greater TG monounsaturated fatty acid levels were associated with lower lean tissue index (r =  − 0.197) and serum albumin (r =  − 0.188), but higher MIS (r = 0.176). Higher levels of TG n-3 polyunsaturated fatty acids (PUFAs) were associated with lower MIS (r =  − 0.168) and interleukin-6 concentrations (r =  − 0.115). Higher levels of TG n-6 PUFAs were associated with lower BMI (r =  − 0.149) but greater serum albumin (r = 0.112). In conclusion, TG monounsaturated fatty acids were associated with poor nutritional status, while TG n-3 PUFAs were associated with good nutritional status. On the other hand, TG saturated fatty acids and TG n-6 PUFAs had both favorable and unfavorable associations with nutritional parameters.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Natalia Śmietana ◽  
Remigiusz Panicz ◽  
Małgorzata Sobczak ◽  
Przemysław Śmietana ◽  
Arkadiusz Nędzarek

The aim of the study was to present a comprehensive characterisation of crayfish meat, which is crucial to assess its potential usefulness in the food industry. To this end, we assessed the yield, basic chemical composition (protein, fat, minerals), nutritional value (amino acid and fatty acid profiles, essential amino acid index (EAAI), chemical score of essential amino acids (CS), hypocholesterolaemic/hypercholesterolaemic ratio (h/H), atherogenicity (AI) and thrombogenicity (TI) indices), as well as culinary value (lab colour, texture, sensory characteristics, structure) of the meat of spiny-cheek crayfish (Faxonius limosus) (n = 226) from Lake Sominko (Poland) harvested in May–September 2017. Crayfish meat, especially that from the abdomen, was shown to have high nutritional parameters. It is lean (0.26% of fat), with a favourable fatty acid profile and a very high quality of fat (PUFA (sum of polyunsaturated fatty acids):SFA (sum of saturated fatty acids), n-6/n-3, h/H, AI, TI) and protein (high CS and EAAI). It is also a better source of Ca, K, Mg, Na, P, and Cu than meat from slaughter animals. Hence, crayfish meat can be an alternative to livestock meat in the human diet. Owing to its culinary value (delicateness, weak game flavour, and odour), it meets the requirements of the most demanding consumers, i.e., children and older people.


2010 ◽  
Vol 298 (6) ◽  
pp. E1122-E1130 ◽  
Author(s):  
Sun Ju Choi ◽  
Francis Kim ◽  
Michael W. Schwartz ◽  
Brent E. Wisse

Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1–7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFα, as judged by induction of IκBα (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IκBα protein, and TNFα pretreatment reduced insulin-mediated p-Akt activation by 30% ( P < 0.05). By comparison, neither mixed saturated fatty acid (100, 250, or 500 μM for ≤6 h) nor palmitate exposure alone (200 μM for ≤24 h) caused inflammatory activation or insulin resistance in cultured hypothalamic neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.


2021 ◽  
pp. 1-9

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus [T2DM] onset. It occurs as a result of disturbances in lipid metabolism and increased levels of circulating free fatty acids [FFAs]. FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased fatty acid flux has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes development. FFAs appear to cause this defect in glucose transport by inhibiting insulin –stimulated tyrosine phosphorylation of insulin receptor substrate-1 [IRS-1] and IRS-1 associated phosphatidyl-inositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular or intrahepatic fatty acid metabolites that induce insulin resistance through different cellular mechanisms. The current review point out the link between enhanced FFAs flux and activation of PKC and how it impacts on both the insulin signaling in muscle and liver as shown from our laboratory data and highlighting the involvement of the inflammatory pathways importance. This embarks the importance of measuring the inflammatory biomarkers in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document