Evidence for endogenous proteases, mRNA level and insulin as multiple mechanisms of N-cadherin down-regulation during retinal development

Development ◽  
1992 ◽  
Vol 114 (4) ◽  
pp. 973-984 ◽  
Author(s):  
E.F. Roark ◽  
N.E. Paradies ◽  
L.A. Lagunowich ◽  
G.B. Grunwald

Our previous studies of the role of cell adhesion in retinal development have focused on the expression and function of N-cadherin, the predominant calcium-dependent intercellular adhesion protein of neural tissues. During the course of retinal development, N-cadherin expression undergoes significant qualitative and quantitative changes in its pattern of expression, most prominently a sharp down-regulation of expression throughout most of the retina. The present studies were directed at investigating the epigenetic mechanisms that could mediate this loss of N-cadherin from the retina. Using an in vitro intact retinal organ culture system, results were obtained which suggest that insulin enhances the down-regulation of N-cadherin expression in a protein-synthesis-dependent fashion. Furthermore, the metalloprotease inhibitor 1,10-phenanthroline inhibits the loss of N-cadherin from the retina. While N-cadherin is down-regulated in organ culture, other cell adhesion molecules, which are not down-regulated in vivo, are also not down-regulated in organ culture. The defined organ culture medium conditioned by the retina accumulates both a soluble 90 × 10(3) M(r) N-terminal fragment of N-cadherin as well as a number of secreted proteases. Both of these components are also shown to be present in vivo in the vitreous humor. Northern blot analysis indicates a single mRNA encoding N-cadherin in the retina and no evidence for a second message that could encode the 90 × 10(3) M(r) fragment. However, the amount of N-cadherin mRNA detectable on northern blots decreases during development. The results reported here suggest that the down-regulation of N-cadherin that occurs during retinal development is possibly mediated by multiple mechanisms, which include turnover at the cell surface mediated by endogenous proteolysis, reduced levels of N-cadherin mRNA and modulation by growth factors.

2001 ◽  
Vol 21 (12) ◽  
pp. 3888-3900 ◽  
Author(s):  
Takao Imai ◽  
Akinori Tokunaga ◽  
Tetsu Yoshida ◽  
Mitsuhiro Hashimoto ◽  
Katsuhiko Mikoshiba ◽  
...  

ABSTRACT Musashi1 (Msi1) is an RNA-binding protein that is highly expressed in neural progenitor cells, including neural stem cells. In this study, the RNA-binding sequences for Msi1 were determined by in vitro selection using a pool of degenerate 50-mer sequences. All of the selected RNA species contained repeats of (G/A)U n AGU (n = 1 to 3) sequences which were essential for Msi1 binding. These consensus elements were identified in some neural mRNAs. One of these, mammaliannumb (m-numb), which encodes a membrane-associated antagonist of Notch signaling, is a likely target of Msi1. Msi1 protein binds in vitro-transcribed m-numb RNA in its 3′-untranslated region (UTR) and binds endogenousm-numb mRNA in vivo, as shown by affinity precipitation followed by reverse transcription-PCR. Furthermore, adenovirus-induced Msi1 expression resulted in the down-regulation of endogenous m-Numb protein expression. Reporter assays using a chimeric mRNA that combined luciferase and the 3′-UTR of m-numb demonstrated that Msi1 decreased the reporter activity without altering the reporter mRNA level. Thus, our results suggested that Msi1 could regulate the expression of its target gene at the translational level. Furthermore, we found that Notch signaling activity was increased by Msi1 expression in connection with the posttranscriptional down-regulation of them-numb gene.


2010 ◽  
Vol 191 (5) ◽  
pp. 1029-1041 ◽  
Author(s):  
Sayantanee Biswas ◽  
Michelle R. Emond ◽  
James D. Jontes

The protocadherins comprise the largest subgroup within the cadherin superfamily, yet their cellular and developmental functions are not well understood. In this study, we demonstrate that pcdh19 (protocadherin 19) acts synergistically with n-cadherin (ncad) during anterior neurulation in zebrafish. In addition, Pcdh19 and Ncad interact directly, forming a protein–protein complex both in vitro and in vivo. Although both molecules are required for calcium-dependent adhesion in a zebrafish cell line, the extracellular domain of Pcdh19 does not exhibit adhesive activity, suggesting that the involvement of Pcdh19 in cell adhesion is indirect. Quantitative analysis of in vivo two-photon time-lapse image sequences reveals that loss of either pcdh19 or ncad impairs cell movements during neurulation, disrupting both the directedness of cell movements and the coherence of movements among neighboring cells. Our results suggest that Pcdh19 and Ncad function together to regulate cell adhesion and to mediate morphogenetic movements during brain development.


2007 ◽  
Vol 6 (6) ◽  
pp. 931-939 ◽  
Author(s):  
Fang Li ◽  
Michael J. Svarovsky ◽  
Amy J. Karlsson ◽  
Joel P. Wagner ◽  
Karen Marchillo ◽  
...  

ABSTRACT Candida albicans is the leading cause of systemic fungal infections in immunocompromised humans. The ability to form biofilms on surfaces in the host or on implanted medical devices enhances C. albicans virulence, leading to antimicrobial resistance and providing a reservoir for infection. Biofilm formation is a complex multicellular process consisting of cell adhesion, cell growth, morphogenic switching between yeast form and filamentous states, and quorum sensing. Here we describe the role of the C. albicans EAP1 gene, which encodes a glycosylphosphatidylinositol-anchored, glucan-cross-linked cell wall protein, in adhesion and biofilm formation in vitro and in vivo. Deleting EAP1 reduced cell adhesion to polystyrene and epithelial cells in a gene dosage-dependent manner. Furthermore, EAP1 expression was required for C. albicans biofilm formation in an in vitro parallel plate flow chamber model and in an in vivo rat central venous catheter model. EAP1 expression was upregulated in biofilm-associated cells in vitro and in vivo. Our results illustrate an association between Eap1p-mediated adhesion and biofilm formation in vitro and in vivo.


2021 ◽  
Vol 20 ◽  
pp. 153303382199528
Author(s):  
Qing Lv ◽  
Qinghua Xia ◽  
Anshu Li ◽  
Zhiyong Wang

This study was performed to investigate the role of interleukin-1 receptor accessory protein (IL1RAP) in stomach carcinoma in vitro and in vivo, determine whether IL1RAP knockdown could regulate the development of stomach carcinoma, and elucidate the relationship between IL1RAP knockdown and inflammation by tumor microenvironment-related inflammatory factors in stomach carcinoma. We first used TCGA and GEPIA systems to predict the potential function of IL1RAP. Second, western blot and RT-PCR were used to analyze the expression, or mRNA level, of IL1RAP at different tissue or cell lines. Third, the occurrence and development of stomach carcinoma in vitro and in vivo were observed by using IL1RAP knockdown lentivirus. Finally, the inflammation of stomach carcinoma in vitro and in vivo was observed. Results show that in GEPIA and TCGA systems, IL1RAP expression in STAD tumor tissue was higher than normal, and high expression of IL1RAP in STAD patients had a worse prognostic outcome. Besides, GSEA shown IL1RAP was negative correlation of apopopsis, TLR4 and NF-κB signaling pathway. We also predicted that IL1RAP may related to IL-1 s, IL-33, and IL-36 s in STAD. The IL1RAP expression and mRNA level in tumor, or MGC803, cells were increased. Furthermore, IL1RAP knockdown by lentivirus could inhibit stomach carcinoma development in vitro and in vivo through weakening tumor cell proliferation, migration, invasion, therefore reducing tumor volume, weight, and biomarker levels, and increasing apoptotic level. Finally, we found IL1RAP knockdown could increase inflammation of tumor microenvironment-related inflammatory factors of stomach carcinoma, in vitro and in vivo. Our study demonstrates that IL1RAP is possibly able to regulate inflammation and apoptosis in stomach carcinoma. Furthermore, TLR4, NF-κB, IL-1 s, IL-33, and IL-36 s maybe the downstream target factor of IL1RAP in inflammation. These results may provide a new strategy for stomach carcinoma development by regulating inflammation.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Peinkofer ◽  
Martina Maass ◽  
Kurt Pfannkuche ◽  
Agapios Sachinidis ◽  
Stephan Baldus ◽  
...  

Abstract Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) are regarded as promising cell type for cardiac cell replacement therapy, but it is not known whether the developmental stage influences their persistence and functional integration in the host tissue, which are crucial for a long-term therapeutic benefit. To investigate this, we first tested the cell adhesion capability of murine iPSC-CM in vitro at three different time points during the differentiation process and then examined cell persistence and quality of electrical integration in the infarcted myocardium in vivo. Methods To test cell adhesion capabilities in vitro, iPSC-CM were seeded on fibronectin-coated cell culture dishes and decellularized ventricular extracellular matrix (ECM) scaffolds. After fixed periods of time, stably attached cells were quantified. For in vivo experiments, murine iPSC-CM expressing enhanced green fluorescent protein was injected into infarcted hearts of adult mice. After 6–7 days, viable ventricular tissue slices were prepared to enable action potential (AP) recordings in transplanted iPSC-CM and surrounding host cardiomyocytes. Afterwards, slices were lysed, and genomic DNA was prepared, which was then used for quantitative real-time PCR to evaluate grafted iPSC-CM count. Results The in vitro results indicated differences in cell adhesion capabilities between day 14, day 16, and day 18 iPSC-CM with day 14 iPSC-CM showing the largest number of attached cells on ECM scaffolds. After intramyocardial injection, day 14 iPSC-CM showed a significant higher cell count compared to day 16 iPSC-CM. AP measurements revealed no significant difference in the quality of electrical integration and only minor differences in AP properties between d14 and d16 iPSC-CM. Conclusion The results of the present study demonstrate that the developmental stage at the time of transplantation is crucial for the persistence of transplanted iPSC-CM. iPSC-CM at day 14 of differentiation showed the highest persistence after transplantation in vivo, which may be explained by a higher capability to adhere to the extracellular matrix.


1995 ◽  
Vol 15 (2) ◽  
pp. 1071-1078 ◽  
Author(s):  
S Davidson ◽  
P Høj ◽  
T Gabriele ◽  
R L Anderson

We have identified a murine B-cell lymphoma cell line, CH1, that has a much-diminished capacity to express increased levels of heat shock proteins in response to heat stress in vitro. In particular, these cells cannot synthesize the inducible 72-kDa heat shock protein (HSP72) which is normally expressed at high levels in stressed cells. We show here that CH1 fails to transcribe HSP72 mRNA after heat shock, even though the heat shock transcription factor, HSF, is activated correctly. After heat shock, HSF from CH1 is found in the nucleus and is phosphorylated, trimerized, and capable of binding the heat shock element. We propose that additional signals which CH1 cells are unable to transduce are normally required to activate hsp72 transcription in vitro. Surprisingly, we have found that when the CH1 cells are heated in situ in a mouse, they show normal expression of HSP72 mRNA and protein. Therefore, CH1 cells have a functional hsp72 gene which can be transcribed and translated when the cells are in an appropriate environment. A diffusible factor present in ascites fluid is capable of restoring normal HSP72 induction in CH1 cells. We conclude that as-yet-undefined factors are required for regulation of the hsp72 gene or, alternatively, that heat shock in vivo causes activation of hsp70 through a novel pathway which the defect in CH1 has exposed and which is distinct from that operating in vitro. This unique system offers an opportunity to study a physiologically relevant pathway of heat shock induction and to biochemically define effectors involved in the mammalian stress response.


1987 ◽  
Vol 104 (5) ◽  
pp. 1361-1374 ◽  
Author(s):  
J L Duband ◽  
S Dufour ◽  
K Hatta ◽  
M Takeichi ◽  
G M Edelman ◽  
...  

In avian embryos, somites constitute the morphological unit of the metameric pattern. Somites are epithelia formed from a mesenchyme, the segmental plate, and are subsequently reorganized into dermatome, myotome, and sclerotome. In this study, we used somitogenesis as a basis to examine tissue remodeling during early vertebrate morphogenesis. Particular emphasis was put on the distribution and possible complementary roles of adhesion-promoting molecules, neural cell adhesion molecule (N-CAM), N-cadherin, fibronectin, and laminin. Both segmental plate and somitic cells exhibited in vitro calcium-dependent and calcium-independent systems of cell aggregation that could be inhibited respectively by anti-N-cadherin and anti-N-CAM antibodies. In vivo, the spatio-temporal expression of N-cadherin was closely associated with both the formation and local disruption of the somites. In contrast, changes in the prevalence of N-CAM did not strictly accompany the remodeling of the somitic epithelium into dermamyotome and sclerotome. It was also observed that fibronectin and laminin were reorganized secondarily in the extracellular spaces after CAM-mediated contacts were modulated. In an in vitro culture system of somites, N-cadherin was lost on individual cells released from somite explants and was reexpressed when these cells reached confluence and established intercellular contacts. In an assay of tissue dissociation in vitro, antibodies to N-cadherin or medium devoid of calcium strongly and reversibly dissociated explants of segmental plates and somites. Antibodies to N-CAM exhibited a smaller disrupting effect only on segmental plate explants. In contrast, antibodies to fibronectin and laminin did not perturb the cohesion of cells within the explants. These results emphasize the possible role of cell surface modulation of CAMs during the formation and remodeling of some transient embryonic epithelia. It is suggested that N-cadherin plays a major role in the control of tissue remodeling, a process in which N-CAM is also involved but to a lesser extent. The substratum adhesion molecules, fibronectin and laminin, do not appear to play a primary role in the regulation of these processes but may participate in cell positioning and in the stabilization of the epithelial structures.


1988 ◽  
Vol 8 (12) ◽  
pp. 5116-5125
Author(s):  
J W Belmont ◽  
G R MacGregor ◽  
K Wager-Smith ◽  
F A Fletcher ◽  
K A Moore ◽  
...  

Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells.


Sign in / Sign up

Export Citation Format

Share Document