ATP is required in platelet serotonin exocytosis for protein phosphorylation and priming of secretory vesicles docked on the plasma membrane

1996 ◽  
Vol 109 (1) ◽  
pp. 113-118
Author(s):  
T. Morimoto ◽  
S. Ogihara

Calcium-evoked secretion generally requires the presence of millimolar concentrations of Mg-ATP. We investigated the role of Mg-ATP in the secretion of serotonin from electropermeabilized bovine platelets. The secretion of serotonin was lost within 5 minutes when the Mg-ATP concentration was diluted to less than 0.1 mM, but was maintained when ATP-gamma S (adenosine 5′-O-3-thiotriphosphate) was used instead of ATP. Okadaic acid, a potent inhibitor of protein phosphatase, could also maintain the exocytotic activity even when ATP was diluted. Decrease in the secretory activity was paralleled by a decrease in phosphorylation level of four proteins after dilution of ATP, but the activity was maintained when the thiophosphorylation level of these proteins was maintained. Two of these proteins were digested by a protease, calpain, which has been shown to lead to a loss in the exocytotic activity. Electron microscopic studies showed that calcium did not induce the formation of distinct bridge-like structures between the granule membrane and the plasma membrane in Mg-ATP-diluted cells, previously shown as the structure transiently formed prior to fusion of the two membranes. Anchorage of the secretory dense granules to the plasma membrane and the presence of the amorphous structures between the granules and the plasma membrane were unchanged by dilution of ATP. These results indicate that ATP is not required for the anchorage itself, but is required to prime anchored granules for calcium-triggered secretion. Maintenance of the phosphorylated state of proteins by ATP enables the calcium trigger to form the bridge-like structures preceding membrane fusion events.

Author(s):  
Grace C.H. Yang

The size and organization of collagen fibrils in the extracellular matrix is an important determinant of tissue structure and function. The synthesis and deposition of collagen involves multiple steps which begin within the cell and continue in the extracellular space. High-voltage electron microscopic studies of the chick embryo cornea and tendon suggested that the extracellular space is compartmentalized by the fibroblasts for the regulation of collagen fibril, bundle, and tissue specific macroaggregate formation. The purpose of this study is to gather direct evidence regarding the association of the fibroblast cell surface with newly formed collagen fibrils, and to define the role of the fibroblast in the control and the precise positioning of collagen fibrils, bundles, and macroaggregates during chick tendon development.


Development ◽  
1974 ◽  
Vol 32 (1) ◽  
pp. 133-145
Author(s):  
Par Claude Chapron

Evidence for the role of an apical cap glycoprotein in amphibian regeneration: cytochemical and autoradiographic electron-microscopic studies Early during limb regeneration in the newt, an ectodermal apical cap covering a mesodermal blastema is formed. High-resolution autoradiography of these tissues has been carried out after incorporation of [3H]fucose, which is a precursor of glycoproteins. Autoradiography shows that silver particles are located at first on epithelial cells, then on mesenchymatous cells. This observation is consistent with a hypothesis in which the apical cap would elaborate a glycoprotein acting on the blastema. Substructural autoradiography and cytochemistry also show the importance of cellular surfaces for both cells producing glycoprotein and those which are target cells.


1976 ◽  
Vol 20 (3) ◽  
pp. 589-617
Author(s):  
M. Hauser ◽  
H. Van Eys

At the ultrastructural level length changes accompanying linear movements of resting (non-feeding) tentacles of the suctorian Heliophrya involve not only altered microtubule numbers, but also marked changes in the specific microtubule pattern of cross-sectioned tentacles. These changes in number and pattern indicate a sliding between axonemal microtubules. The visualization of microfilaments in the cytoplasm at the tentacle base and in the knob region could shed new light on the problem of whether microtubular sliding is an active or passive process. At the tentacle base, microfilaments are either arranged in a ring-shaped configuration around the axoneme, or they run parallel to the axonemal microtubules, whereas at the tentacle tip during the resting state, microfilaments are closely associated with the plasma membrane of the knob. They form a filamentous reticular layer, which is continuous at the anchorage site of axonemal microtubules with the dense epiplasmic layer of the tentacle shaft. Obiously, this filamentous layer is engaged in positioning the haptocysts at the plasma membrane and in holding the membrane itself under tension. The putative contractile nature of microfilaments and the epiplasmic layer is argued from ATP-sensitive glycerol models of tentacles and from the results of halothane treatment of native tentacles. Halothane treatment of resting tentacles also gave indications of the presence of differentially stable intermicrotubule-bridges. The role of micro-filaments and halothane-resistant dynein-like inter-row bridges in tentacle movement is discussed. As soon as the plasma membrane of the knob is ‘sealed’ with the prey pellicle during feeding, the microtubules of the sleeve region slide into the knob where they bend back and outwards. The microtubules now appear decorated and sometimes cross-connected by microfilaments which adhere closely to the plasma membrane- now acting as a peritrophic membrane-lining the prey cytoplasm against the microtubules of the inner tube. These microfilaments which show a close association with the microtubules of the active knob area, are thought to be engaged in microtubular bending and stretching during feeding. They may also be involved in the transport of the peritrophic membrane in distal tentacle regions. Microinematographically recorded oscillations in tentacle diameter in these regions are in agreement with the electron-microscopic findings of various states of collapsed tentacle axonemes. These observations, as well as the occurrence of helically twisted tentacles during feeding, suggest microfilament mediated sequential back and forth movements of sleeve microtubules in the knob region which generate a proximally migrating helical wave.


1990 ◽  
Vol 111 (1) ◽  
pp. 79-86 ◽  
Author(s):  
T Morimoto ◽  
S Ogihara ◽  
H Takisawa

The ultrastructural changes in electropermeabilized bovine platelets that accompany the Ca2(+)-induced secretion of serotonin were investigated in ultra-thin sections of chemically fixed cells. Such preparations permitted us to study both the localization of and the structures associated with serotonin-containing dense granules. Localization of dense granules within cells was examined by measuring the shortest distances between the granular membranes and the plasma membrane. About 40% of total granules were located close to the plasma membrane at an average distance of 10.8 +/- 1.6 nm. 71% of the total number of granules were localized at a similar average distance of 12.5 +/- 2.7 nm in intact platelets. The percentage of granules apposed to the plasma membrane corresponded closely to the percentage of total serotonin that was maximally secreted after stimulation of the permeabilized (38 +/- 4.9%) and the intact platelets (72 +/- 3.6%). Furthermore, the percentage of granules anchored to the membrane, but not of those in other regions of permeabilized cells, decreased markedly when cells were stimulated for 30 s by extracellularly added Ca2+. The decrease in the numbers of granules in the vicinity of the plasma membrane corresponded to approximately 22% of the total number of dense granules that were used for measurements of the distances between the two membranes and corresponded roughly to the overall decrease (15%) in the average number of the granules per cell. Most dense granules were found to be associated with meshwork structures of microfilaments. Upon secretory stimulation, nonfilamentous, amorphous structures found between the plasma membrane and the apposed granules formed a bridge-like structure that connected both membranes without any obvious accompanying changes in the microfilament structures. These results suggest that the dense granules that are susceptible to secretory stimulation are anchored to the plasma membrane before stimulation, and that the formation of the bridge-like structure may participate in the Ca2(+)-regulated exocytosis.


Crustaceana ◽  
1995 ◽  
Vol 68 (5) ◽  
pp. 616-628
Author(s):  
C. Manjulatha ◽  
D. Erri Babu

AbstractHistological and histochemical observations reveal that there are two clusters of acidic polysaccharide secreting glands at the opening of the mouth into the oesophagus in Pagurus bernhardus and Clibanarius longitarsus. Below these there are structurally similar glands in the connective tissue of the oesophagus. The epithelial cells lining the hepatopancreatic main duct show secretory activity and they secrete acidophilic granular secretions, which are chemically similar to vertebrate pancreatic zymogen granules. Electron microscopic studies reveal the presence of secretory cells in the hepatopancreatic duct and the synthesis of zymogens within these cells. The time of release of these granular secretions synchronizes with the release of the food material into the midgut.


2016 ◽  
Vol 16 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Brij Bhushan ◽  
Arunima Nayak ◽  
Kamaluddin

AbstractThe role of manganese oxides in concentrating organic moieties and offering catalytic activity for prebiotic reactions is investigated by studying their interaction with different aromatic amines such as aniline, p-chloroaniline, p-toluidine and p-anisidine. For all amines, metal oxides showed highest adsorption at neutral pH. The order of their adsorption capacity and affinity as revealed by the Langmuir constants was found to be manganosite (MnO) > bixbyite (Mn2O3) > hausmannite (Mn3O4) > and pyrolusite (MnO2). At alkaline pH, these manganese oxides offered their surfaces for oxidation of amines to form coloured oligomers. Analysis of the oxidation products by gas chromatography–mass spectrometry showed the formation of a dimer from p-anisidine and p-chloroaniline, while a trimer and tetramer is formed from p-toluidine and aniline, respectively. A reaction mechanism is proposed for the formation of the oligomers. While field-emission scanning electron microscopic studies confirm the binding phenomenon, the Fourier transform infrared spectroscopy analysis suggests that the mechanism of binding of amines on the manganese oxides was primarily electrostatic. The adsorption behaviour of the studied aromatic amines followed the order: p-anisidine > p-toluidine > aniline > p-chloroaniline, which is related to the basicities and structure of the amines. Our studies confirmed the significance of the role of manganese oxides in prebiotic chemistry.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1141-1141
Author(s):  
Satish Babu Cheepala ◽  
Kazumasa Takenaka ◽  
Tamara I. Pestina ◽  
Carl W. Jackson ◽  
Schuetz John

Abstract Abstract 1141 Cyclic nucleotides have an important role in platelet aggregation and the role of phosphodiesterases in regulating their concentration is well known. Currently it is unknown if plasma membrane cyclic nucleotide export proteins regulate cyclic nucleotide concentrations in platelets. The ATP-binding cassette transporter, ABCC4 functions as a cyclic nucleotide exporter that is highly expressed in platelets. However, its role as a cyclic nucleotide transporter in platelets is unknown, because it was reportedly localized intracellularly in the platelet dense granules. This original report (Jedlitschky, Tirschmann et al. 2004) evaluated ABCC4 localization by immune-fluorescence of platelets after attachment to collagen coated coverslips. However, collagen attachment activates platelets causing mobilization and fusion of alpha and dense granules to the plasma membrane, thus rendering conditions that distinguish between plasma membrane and dense granules almost impossible. To resolve this problem we isolated the platelets under conditions that minimize activation during isolation. Subsequently, these platelets membranes were labeled with the cell impermeable biotinylating agent (EZ-Link Sulfo-NHS-LC-LC Biotin). Analysis of total platelet lysate detected the dense granule marker, P-selectin and Abcc4. However, after precipitation of the plasma membrane with streptavidin-beads, we detected only Abcc4. This indicates Mrp4 is at the plasma membrane. We confirmed Abcc4 localization by confocal microscopy on platelets that were treated with a monoclonal antibody specific to Abcc4. Evidence that Abcc4 regulates cyclic nucleotide levels under basal conditions was then provided by the findings that Abcc4-null platelets have elevated cyclic nucleotides. We further used the Abcc4-null mouse model to explore the role of Abcc4 in platelet biology. The Abcc4-null mouse does not have any change in the platelet or dense granules number compared to the wild type mouse. Platelet activation in vivo can be initiated by interaction with collagen through the GPVI receptor that is expressed at the plasma membrane of the platelets. At the molecular level, the initiation of platelet activation by collagen results in an increase in the cyclic nucleotide concentration and phosphorylation of vasodilator-stimulated phosphoprotein (VASP) which can attenuate aggregation. To determine the Abcc4 role in this process we exposed Abcc4-null platelets to collagen and discovered that these platelets have impaired activation in response to collagen. However, Abcc4-null platelets activated by thrombin or ADP, which activate either G-coupled PAR receptors or P2Y12 receptor respectively, show an aggregation profile almost identical to wildtype platelets, thus indicating the defect in Abcc4-null platelet aggregation is specific to the collagen initiated pathway. To understand the basis for the impaired aggregation of Abcc4-null platelets, we examined VASP phosphorylation after collagen treatment, and discovered that the cyclic nucleotide dependent phosphorylation of VASP (Ser 157) is elevated in the Abcc4-null platelets. These results strongly suggest that Abcc4-null platelets have impaired GPVI activation by collagen due to elevated cyclic nucleotide concentrations. Based on these studies we conclude that Abcc4 plays a critical role in regulating platelet cyclic nucleotide concentrations and its absence or perhaps inhibition (by drugs) impairs the aggregation response to collagen. Because many antiplatelet drugs are potent inhibitors of Abcc4 (e.g., Dipyridamole and Sildenafil) these findings have strong implications for not just the development of antiplatelet drugs, but also for understanding the role of Abcc4 in regulating intracellular nucleotide levels. Jedlitschky, G., K. Tirschmann, et al. (2004). “The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage.” Blood 104(12): 3603–10. This work was supported by NIH and by the American Lebanese Syrian Associated Charities (ALSAC). Disclosures: No relevant conflicts of interest to declare.


1964 ◽  
Vol 23 (1) ◽  
pp. 21-38 ◽  
Author(s):  
John W. Greenawalt ◽  
Carlo S. Rossi ◽  
Albert L. Lehninger

Rat liver mitochondria allowed to accumulate maximal amounts of Ca++ and HPO4= ions from the suspending medium in vitro during respiration have a considerably higher specific gravity than normal mitochondria and may be easily separated from the latter by isopycnic centrifugation in density gradients of sucrose or cesium chloride. When the mitochondria are allowed to accumulate less than maximal amounts of Ca++ and HPO4= from the medium, they have intermediate specific gravities which are roughly proportional to their content of calcium phosphate. Maximally "loaded" mitochondria are relatively homogeneous with respect to specific gravity. Correlated biochemical and electron microscopic studies show that Ca++-loaded mitochondria contain numerous dense granules, of which some 85 per cent are over 500 A in diameter. These granules are electron-opaque not only following fixation and staining with heavy metal reagents, but also following fixation with formaldehyde, demonstrating that the characteristic granules in Ca++-loaded mitochondria have intrinsic electron-opacity. The dense granules are almost always located within the inner compartment of the mitochondria and not in the space between the inner and outer membranes. They are frequently located at or near the cristae and they often show electron-transparent "cores." Such granules appear to be made up of clusters of smaller dense particles, but preliminary x-ray diffraction analysis and electron diffraction studies have revealed no evidence of crystallinity in the deposits. The electron-opaque granules decrease in number when the Ca++-loaded mitochondria are incubated with 2,4-dinitrophenol; simultaneously there is discharge of Ca++ and phosphate from the mitochondria into the medium.


2004 ◽  
Vol 72 (11) ◽  
pp. 6262-6270 ◽  
Author(s):  
Nicole R. Luke ◽  
Amy J. Howlett ◽  
Jianqiang Shao ◽  
Anthony A. Campagnari

ABSTRACT Type IV pili, filamentous surface appendages primarily composed of a single protein subunit termed pilin, play a crucial role in the initiation of disease by a wide range of pathogenic bacteria. Although previous electron microscopic studies suggested that pili might be present on the surface of Moraxella catarrhalis isolates, detailed molecular and phenotypic analyses of these structures have not been reported to date. We identified and cloned the M. catarrhalis genes encoding PilA, the major pilin subunit, PilQ, the outer membrane secretin through which the pilus filament is extruded, and PilT, the NTPase that mediates pilin disassembly and retraction. To initiate investigation of the role of this surface organelle in pathogenesis, isogenic pilA, pilT, and pilQ mutants were constructed in M. catarrhalis strain 7169. Comparative analyses of the wild-type 7169 strain and three isogenic pil mutants demonstrated that M. catarrhalis expresses type IV pili that are essential for natural genetic transformation. Our studies suggest type IV pilus production by M. catarrhalis is constitutive and ubiquitous, although pilin expression was demonstrated to be iron responsive and Fur regulated. These data indicate that additional studies aimed at elucidating the prevalence and role of type IV pili in the pathogenesis and host response to M. catarrhalis infections are warranted.


Sign in / Sign up

Export Citation Format

Share Document