Identification of a novel C-terminal variant of beta II spectrin: two isoforms of beta II spectrin have distinct intracellular locations and activities

2000 ◽  
Vol 113 (11) ◽  
pp. 2023-2034 ◽  
Author(s):  
N.V. Hayes ◽  
C. Scott ◽  
E. Heerkens ◽  
V. Ohanian ◽  
A.M. Maggs ◽  
...  

It is established that variations in the structure and activities of betaI spectrin are mediated by differential mRNA splicing. The two betaI spectrin splice forms so far identified have either long or short C-terminal regions. Are analogous mechanisms likely to mediate regulation of betaII spectrins? Thus far, only a long form of betaII spectrin is reported in the literature. Five human expressed sequence tags indicated the existence of a short splice variant of betaII spectrin. The occurrence and DNA sequence of the short C-terminal variant was confirmed by analysis of human and rat cDNA. The novel variant lacks a pleckstrin homology domain, and has 28 C-terminal residues not present in the previously recognized longer form. Transcripts of the short C-terminal variant (7.5 and 7. 0 kb) were most abundant in tissues originating from muscle and nervous system. Antibodies raised to a unique sequence of short C-terminal variant recognized 240 kDa polypeptides in cardiac and skeletal muscle and in nervous tissue; in cerebellum and forebrain, additional 270 kDa polypeptides were detected. In rat heart and skeletal muscle, both long and short C-terminal forms of betaII spectrin localized in the region of the Z line. The central region of the sarcomere, coincident with the M line, was selectively labeled with antibodies to the short C-terminal form. In cerebellum, the short form was not detectable in parallel fibers, structures in which the long form was readily detected. In cultured cerebellar granule neurons, the long form was dominant in neurites, with the short form being most abundant in cell bodies. In vitro, the short form was found to lack the binding activity for the axonal protein fodaxin, which characterizes the C-terminal region of the long form. Subcellular fractionation of brain revealed that the short form was scarcely detectable in post-synaptic density preparations, in which the long form was readily detected. We conclude that variation in the structure of the C-terminal regions of betaII spectrin isoforms correlates with their differential intracellular targeting.

2003 ◽  
Vol 14 (7) ◽  
pp. 2706-2715 ◽  
Author(s):  
Aymone Gurtner ◽  
Isabella Manni ◽  
Paola Fuschi ◽  
Roberto Mantovani ◽  
Fiorella Guadagni ◽  
...  

NF-Y is composed of three subunits, NF-YA, NF-YB, and NF-YC, all required for DNA binding. All subunits are expressed in proliferating skeletal muscle cells, whereas NF-YA alone is undetectable in terminally differentiated cells in vitro. By immunohistochemistry, we show that the NF-YA protein is not expressed in the nuclei of skeletal and cardiac muscle cells in vivo. By chromatin immunoprecipitation experiments, we demonstrate herein that NF-Y does not bind to the CCAAT boxes of target promoters in differentiated muscle cells. Consistent with this, the activity of these promoters is down-regulated in differentiated muscle cells. Finally, forced expression of the NF-YA protein in cells committed to differentiate leads to an impairment in the down-regulation of cyclin A, cyclin B1, and cdk1 expression and is accompanied by a delay in myogenin expression. Thus, our results indicate that the suppression of NF-Y function is of crucial importance for the inhibition of several cell cycle genes and the induction of the early muscle-specific program in postmitotic muscle cells.


2001 ◽  
Vol 354 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Mitsunori FUKUDA ◽  
Katsuhiko MIKOSHIBA

Synaptotagmin (Syt) belongs to a family of type-I membrane proteins and is a protein that consists of a short extracellular N-terminus, a single transmembrane domain, two C2 domains and a short C-terminus. Here, we cloned and characterized a mouse orthologue of human KIAA1427 protein as an atypical Syt (named Syt XIII). Subcellular fractionation and antibody-uptake experiments indicate that Syt XIII is indeed a type-I membrane protein, but, unlike other Syt isoforms, lacks an N-terminal extracellular domain. Syt XIII C2 domains show relatively little similarity to Syt I (less than 35% identity at the amino acid level), and lack key amino acids responsible for Ca2+ binding. Because of these substitutions, the Syt XIII C2 domains did not show Ca2+-dependent phospholipid-binding activity, and Syt XIII is thus classified as a Ca2+-independent isoform. By contrast, the Syt XIII C-terminal domain is highly homologous with other Syt isoforms and can function as a common receptor for neurexin Iα in vitro. Since Syt XIII is expressed in various tissues outside the brain, Syt XIII may be involved in constitutive vesicle transport.


2008 ◽  
Vol 74 (10) ◽  
pp. 3151-3158 ◽  
Author(s):  
Piyanate Sunyakumthorn ◽  
Apichai Bourchookarn ◽  
Walairat Pornwiroon ◽  
Connie David ◽  
Steven A. Barker ◽  
...  

ABSTRACT Morphological differentiation in some arthropod-borne bacteria is correlated with increased bacterial virulence, transmission potential, and/or as a response to environmental stress. In the current study, we utilized an in vitro model to examine Rickettsia felis morphology and growth under various culture conditions and bacterial densities to identify potential factors that contribute to polymorphism in rickettsiae. We utilized microscopy (electron microscopy and immunofluorescence), genomic (PCR amplification and DNA sequencing of rickettsial genes), and proteomic (Western blotting and liquid chromatography-tandem mass spectrometry) techniques to identify and characterize morphologically distinct, long-form R. felis. Without exchange of host cell growth medium, polymorphic R. felis was detected at 12 days postinoculation when rickettsiae were seeded at a multiplicity of infection (MOI) of 5 and 50. Compared to short-form R. felis organisms, no change in membrane ultrastructure in long-form polymorphic rickettsiae was observed, and rickettsiae were up to six times the length of typical short-form rickettsiae. In vitro assays demonstrated that short-form R. felis entered into and replicated in host cells faster than long-form R. felis. However, when both short- and long-form R. felis organisms were maintained in cell-free medium for 12 days, the infectivity of short-form R. felis was decreased compared to long-form R. felis organisms, which were capable of entering host cells, suggesting that long-form R. felis is more stable outside the host cell. The relationship between rickettsial polymorphism and rickettsial survivorship should be examined further as the yet undetermined route of horizontal transmission of R. felis may utilize metabolically and morphologically distinct forms for successful transmission.


1984 ◽  
Vol 4 (7) ◽  
pp. 581-587 ◽  
Author(s):  
M. J. Jackson ◽  
D. A. Jones ◽  
E. J. Harris

Chlorpromazine, mepacrine, tetracaine, dibucaine, chloroquine, and procaine have been shown to inhibit the iron- and ascorbate-induced lipid peroxidation of skeletal-muscle hornogenates in vitro. These compounds are known to be inhibitors of phospholipase activity, but they were also found to be effective in blocking free-radical-mediated damage to lipids in denatured homogenates, to linoleate suspensions, and to glutamic acid solutions where phospholipase activity was not a relevant factor. The inhibitory action did not appear to be related to any iron-binding activity of the compounds.


1992 ◽  
Vol 285 (1) ◽  
pp. 47-53 ◽  
Author(s):  
O Culic ◽  
Q H Huang ◽  
D Flanagan ◽  
D Hixson ◽  
S H Lin

An hepatocyte cell-adhesion molecule (cell-CAM105) was recently shown to be identical with the liver plasma-membrane ecto-ATPase. This protein has structural features of the immunoglobulin superfamily and is homologous with carcinoembryonic antigen proteins. We have cloned a cDNA encoding a new form of the cell-CAM105 which is a variant of the previously isolated clone. In addition to having a shorter cytoplasmic domain, the new isoform also has substitutions clustered in the first 130 amino acids of the extracellular domain. Both of these isoforms are expressed on the surface of hepatocytes with the shorter variant being the predominant form. The previously isolated cell-CAM105 (long form) has more potential phosphorylation sites than does the new isoform (short form). Both isoforms are found to be phosphorylated after incubation with [32P]phosphate in vitro, with the long form being phosphorylated to a significantly higher extent. This observed differential phosphorylation could be one of the mechanisms for the regulation of isoform functions. Using antipeptide antibodies specific for the long form and antibodies that are reactive with both isoforms, we have shown that both isoforms are localized in the canalicular domain of hepatocytes. The sequence differences between these two isoforms suggest that they are probably derived from different genes rather than from alternative splicing.


1994 ◽  
Vol 5 (7) ◽  
pp. 807-818 ◽  
Author(s):  
D A Lazzarino ◽  
I Boldogh ◽  
M G Smith ◽  
J Rosand ◽  
L A Pon

Sedimentation assays were used to demonstrate and characterize binding of isolated yeast mitochondria to phalloidin-stabilized yeast F-actin. These actin-mitochondrial interactions are ATP sensitive, saturable, reversible, and do not depend upon mitochondrial membrane potential. Protease digestion of mitochondrial outer membrane proteins or saturation of myosin-binding sites on F-actin with the S1 subfragment of skeletal myosin block binding. These observations indicate that a protein (or proteins) on the mitochondrial surface mediates ATP-sensitive, reversible binding of mitochondria to the lateral surface of microfilaments. Actin copurifies with mitochondria during subcellular fractionation and is released from the organelle upon treatment with ATP. Thus, actin-mitochondrial interactions resembling those observed in vitro may also exist in intact yeast cells. Finally, a yeast mutant bearing a temperature-sensitive mutation in the actin-encoding ACT1 gene (act1-3) displays temperature-dependent defects in transfer of mitochondria from mother cells to newly developed buds during yeast cell mitosis.


2008 ◽  
Vol 414 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Maristella Villani ◽  
Marimuthu Subathra ◽  
Yeong-Bin Im ◽  
Young Choi ◽  
Paola Signorelli ◽  
...  

SMS [SM (sphingomyelin) synthase] is a class of enzymes that produces SM by transferring a phosphocholine moiety on to ceramide. PC (phosphatidylcholine) is believed to be the phosphocholine donor of the reaction with consequent production of DAG (diacylglycerol), an important bioactive lipid. In the present study, by modulating SMS1 and SMS2 expression, the role of these enzymes on the elusive regulation of DAG was investigated. Because we found that modulation of SMS1 or SMS2 did not affect total levels of endogenous DAG in resting cells, whereas they produce DAG in vitro, the possibility that SMSs could modulate subcellular pools of DAG, once acute activation of the enzymes is triggered, was investigated. Stimulation of SM synthesis was induced by either treatment with short-chain ceramide analogues or by increasing endogenous ceramide at the plasma membrane, and a fluorescently labelled conventional C1 domain [from PKC (protein kinase C)] enhanced in its DAG binding activity was used to probe subcellular pools of DAG in the cell. With this approach, we found, using confocal microscopy and subcellular fractionation, that modulation of SMS1 and, to a lesser extent, SMS2 affected the formation of DAG at the Golgi apparatus. Similarly, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein PKD (protein kinase D) to the Golgi. These results provide direct evidence that both enzymes are capable of regulating the formation of DAG in cells, that this pool of DAG is biologically active, and for the first time directly implicate SMS1 and SMS2 as regulators of DAG-binding proteins in the Golgi apparatus.


Author(s):  
S.L. White ◽  
C.B. Jensen ◽  
D.D. Giera ◽  
D.A. Laska ◽  
M.N. Novilla ◽  
...  

In vitro exposure to LY237216 (9-Deoxo-11-deoxy-9,11-{imino[2-(2-methoxyethoxy)ethylidene]-oxy}-(9S)-erythromycin), a macrolide antibiotic, was found to induce cytoplasmic vacuolation in L6 skeletal muscle myoblast cultures (White, S.L., unpubl). The present study was done to determine, by autoradiographic quantitative analysis, the subcellular distribution of 3H-LY237216 in L6 cells.L6 cells (ATCC, CRL 1458) were cultured to confluency on polycarbonate membrane filters (Millipore Corp., Bedford, MA) in M-199 medium (GIBCO® Labs) with 10% fetal bovine serum. The cells were exposed from the apical surface for 1-hour to unlabelled-compound (0 μCi/ml) or 50 (μCi/ml of 3H-LY237216 at a compound concentration of 0.25 mg/ml. Following a rapid rinse in compound-free growth medium, the cells were slam-frozen against a liquid nitrogen cooled, polished copper block in a CF-100 cryofixation unit (LifeCell Corp., The Woodlands, TX). Specimens were dried in the MDD-C Molecular Distillation Drier (LifeCell Corp.), vapor osmicated and embedded in Spurrs low viscosity resin. Ultrathin sections collected on formvar coated stainless steel grids were counter-stained, then individually mounted on corks. A monolayer of Ilford L4 nuclear emulsion (Polysciences, Inc., Warrington, PA) was placed on the sections, utilizing a modified “loop method”. The emulsions were exposed for 7-weeks in a light-tight box at 4°C. Autoradiographs were developed in Microdol-X developer and examined on a Philips EM410LS transmission electron microscope. Quantitative analysis of compound localization employed the point and circle approach of Williams; incorporating the probability circle method of Salpeter and McHenry.


1988 ◽  
Vol 27 (04) ◽  
pp. 151-153
Author(s):  
P. Thouvenot ◽  
F. Brunotte ◽  
J. Robert ◽  
L. J. Anghileri

In vitro uptake of 67Ga-citrate and 59Fe-citrate by DS sarcoma cells in the presence of tumor-bearing animal blood plasma showed a dramatic inhibition of both 67Ga and 59Fe uptakes: about ii/io of 67Ga and 1/5o of the 59Fe are taken up by the cells. Subcellular fractionation appears to indicate no specific binding to cell structures, and the difference of binding seems to be related to the transferrin chelation and transmembrane transport differences


Sign in / Sign up

Export Citation Format

Share Document