scholarly journals Let's get physical – mechanisms of crossover interference

2021 ◽  
Vol 134 (10) ◽  
Author(s):  
Lexy von Diezmann ◽  
Ofer Rog

ABSTRACT The formation of crossovers between homologous chromosomes is key to sexual reproduction. In most species, crossovers are spaced further apart than would be expected if they formed independently, a phenomenon termed crossover interference. Despite more than a century of study, the molecular mechanisms implementing crossover interference remain a subject of active debate. Recent findings of how signaling proteins control the formation of crossovers and about the interchromosomal interface in which crossovers form offer new insights into this process. In this Review, we present a cell biological and biophysical perspective on crossover interference, summarizing the evidence that links interference to the spatial, dynamic, mechanical and molecular properties of meiotic chromosomes. We synthesize this physical understanding in the context of prevailing mechanistic models that aim to explain how crossover interference is implemented.

2018 ◽  
Vol 115 (40) ◽  
pp. E9333-E9342 ◽  
Author(s):  
Kyle R. Fowler ◽  
Randy W. Hyppa ◽  
Gareth A. Cromie ◽  
Gerald R. Smith

Viable gamete formation requires segregation of homologous chromosomes connected, in most species, by cross-overs. DNA double-strand break (DSB) formation and the resulting cross-overs are regulated at multiple levels to prevent overabundance along chromosomes. Meiotic cells coordinate these events between distant sites, but the physical basis of long-distance chromosomal communication has been unknown. We show that DSB hotspots up to ∼200 kb (∼35 cM) apart form clusters via hotspot-binding proteins Rec25 and Rec27 in fission yeast. Clustering coincides with hotspot competition and interference over similar distances. Without Tel1 (an ATM tumor-suppressor homolog), DSB and crossover interference become negative, reflecting coordinated action along a chromosome. These results indicate that DSB hotspots within a limited chromosomal region and bound by their protein determinants form a clustered structure that, via Tel1, allows only one DSB per region. Such a “roulette” process within clusters explains the observed pattern of crossover interference in fission yeast. Key structural and regulatory components of clusters are phylogenetically conserved, suggesting conservation of this vital regulation. Based on these observations, we propose a model and discuss variations in which clustering and competition between DSB sites leads to DSB interference and in turn produces crossover interference.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1013-1025 ◽  
Author(s):  
Janet E Novak ◽  
Petra B Ross-Macdonald ◽  
G Shirleen Roeder

AbstractThe budding yeast MSH4 gene encodes a MutS homolog produced specifically in meiotic cells. Msh4 is not required for meiotic mismatch repair or gene conversion, but it is required for wild-type levels of crossing over. Here, we show that a msh4 null mutation substantially decreases crossover interference. With respect to the defect in interference and the level of crossing over, msh4 is similar to the zip1 mutant, which lacks a structural component of the synaptonemal complex (SC). Furthermore, epistasis tests indicate that msh4 and zip1 affect the same subset of meiotic crossovers. In the msh4 mutant, SC formation is delayed compared to wild type, and full synapsis is achieved in only about half of all nuclei. The simultaneous defects in synapsis and interference observed in msh4 (and also zip1 and ndj1/tam1) suggest a role for the SC in mediating interference. The Msh4 protein localizes to discrete foci on meiotic chromosomes and colocalizes with Zip2, a protein involved in the initiation of chromosome synapsis. Both Zip2 and Zip1 are required for the normal localization of Msh4 to chromosomes, raising the possibility that the zip1 and zip2 defects in crossing over are indirect, resulting from the failure to localize Msh4 properly.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 629
Author(s):  
Snjezana Janjetovic ◽  
Philipp Lohneis ◽  
Axel Nogai ◽  
Derya Balci ◽  
Leo Rasche ◽  
...  

Background: Extramedullary plasma cell (PC) disorders may occur as extramedullary disease in multiple myeloma (MM-EMD) or as primary extramedullary plasmocytoma (pEMP)/solitary osseous plasmocytoma (SOP). In this study, we aimed to obtain insights into the molecular mechanisms of extramedullary spread of clonal PC. Methods: Clinical and biological characteristics of 87 patients with MM-EMD (n = 49), pEMP/SOP (n = 20) and classical MM (n = 18) were analyzed by using immunohistochemistry (CXCR4, CD31, CD44 and CD81 staining) and cytoplasmic immunoglobulin staining combined with fluorescence in situ hybridization (cIg-FISH). Results: High expression of CD44, a cell-surface glycoprotein involved in cell-cell interactions, was significantly enriched in MM-EMD (90%) vs. pEMP/SOP (27%) or classical MM (33%) (p < 0.001). In addition, 1q21 amplification by clonal PC occurred at a similar frequency of MM-EMD (33%), pEMP/SOP (57%) and classical MM (44%). Conversely, del(17p13), t(4;14) and t(14;16) were completely absent in pEMP/SOP. Besides this, 1q21 amplification was identified in 64% of not paraskeletal samples from MM-EMD or pEMP compared to 9% of SOP or paraskeletal MM-EMD/pEMP and 44% of classical MM samples, respectively (p = 0.02). Conclusion: Expression of molecules involved in homing and cytogenetic aberrations differ between MM with or without EMD and pEMP/SOP.


Author(s):  
Yuedan Fan ◽  
Wenjuan Zou ◽  
Jia Liu ◽  
Umar Al-Sheikh ◽  
Hankui Cheng ◽  
...  

AbstractSensory modalities are important for survival but the molecular mechanisms remain challenging due to the polymodal functionality of sensory neurons. Here, we report the C. elegans outer labial lateral (OLL) sensilla sensory neurons respond to touch and cold. Mechanosensation of OLL neurons resulted in cell-autonomous mechanically-evoked Ca2+ transients and rapidly-adapting mechanoreceptor currents with a very short latency. Mechanotransduction of OLL neurons might be carried by a novel Na+ conductance channel, which is insensitive to amiloride. The bona fide mechano-gated Na+-selective degenerin/epithelial Na+ channels, TRP-4, TMC, and Piezo proteins are not involved in this mechanosensation. Interestingly, OLL neurons also mediated cold but not warm responses in a cell-autonomous manner. We further showed that the cold response of OLL neurons is not mediated by the cold receptor TRPA-1 or the temperature-sensitive glutamate receptor GLR-3. Thus, we propose the polymodal functionality of OLL neurons in mechanosensation and cold sensation.


2019 ◽  
Vol 116 (37) ◽  
pp. 18423-18428 ◽  
Author(s):  
Huizhong Xu ◽  
Zhisong Tong ◽  
Qing Ye ◽  
Tengqian Sun ◽  
Zhenmin Hong ◽  
...  

During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure’s lateral elements (LEs). While the components of the mammalian chromosome axis/LE—including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2—are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.


2006 ◽  
Vol 84 (3-4) ◽  
pp. 287-297 ◽  
Author(s):  
Fernand Gobeil ◽  
Audrey Fortier ◽  
Tang Zhu ◽  
Michela Bossolasco ◽  
Martin Leduc ◽  
...  

G-protein-coupled receptors (GPCRs) comprise a wide family of monomeric heptahelical glycoproteins that recognize a broad array of extracellular mediators including cationic amines, lipids, peptides, proteins, and sensory agents. Thus far, much attention has been given towards the comprehension of intracellular signaling mechanisms activated by cell membrane GPCRs, which convert extracellular hormonal stimuli into acute, non-genomic (e.g., hormone secretion, muscle contraction, and cell metabolism) and delayed, genomic biological responses (e.g., cell division, proliferation, and apoptosis). However, with respect to the latter response, there is compelling evidence for a novel intracrine mode of genomic regulation by GPCRs that implies either the endocytosis and nuclear translocation of peripheral-liganded GPCR and (or) the activation of nuclearly located GPCR by endogenously produced, nonsecreted ligands. A noteworthy example of the last scenario is given by heptahelical receptors that are activated by bioactive lipoids (e.g., PGE2 and PAF), many of which may be formed from bilayer membranes including those of the nucleus. The experimental evidence for the nuclear localization and signalling of GPCRs will be reviewed. We will also discuss possible molecular mechanisms responsible for the atypical compartmentalization of GPCRs at the cell nucleus, along with their role in gene expression.


2002 ◽  
Vol 1 (5) ◽  
pp. 319-327 ◽  
Author(s):  
M. P. Rols ◽  
M. Golzio ◽  
B. Gabriel ◽  
J. Teissié

Electric field pulses are a new approach for drug and gene delivery for cancer therapy. They induce a localized structural alteration of cell membranes. The associated physical mechanisms are well explained and can be safely controlled. A position dependent modulation of the membrane potential difference is induced when an electric field is applied to a cell. Electric field pulses with an overcritical intensity evoke a local membrane alteration. A free exchange of hydrophilic low molecular weight molecules takes place across the membrane. A leakage of cytosolic metabolites and a loading of polar drugs into the cytoplasm are obtained. The fraction of the cell surface which is competent for exchange is a function of the field intensity. The level of local exchange is strongly controlled by the pulse duration and the number of successive pulses. The permeabilised state is long lived. Its lifetime is under the control of the cumulated pulse duration. Cell viability can be preserved. Gene transfer is obtained but its mechanism is not a free diffusion. Plasmids are electrophoretically accumulated against the permeabilised cell surface and form aggregates due to the field effect. After the pulses, several steps follow: translocation to the cytoplasm, traffic to the nucleus and expression. Molecular structural and metabolic changes in cells remain mostly poorly understood. Nevertheless, while most studies were established on cells in culture ( in vitro), recent experiments show that similar effects are obtained on tissue ( in vivo). Transfer remains controlled by the physical parameters of the electrical treatment.


2021 ◽  
Vol 49 (4) ◽  
pp. 1779-1790 ◽  
Author(s):  
Lorenzo Ceccarelli ◽  
Chiara Giacomelli ◽  
Laura Marchetti ◽  
Claudia Martini

Extracellular vesicles (EVs) are a heterogeneous family of cell-derived lipid bounded vesicles comprising exosomes and microvesicles. They are potentially produced by all types of cells and are used as a cell-to-cell communication method that allows protein, lipid, and genetic material exchange. Microglia cells produce a large number of EVs both in resting and activated conditions, in the latter case changing their production and related biological effects. Several actions of microglia in the central nervous system are ascribed to EVs, but the molecular mechanisms by which each effect occurs are still largely unknown. Conflicting functions have been ascribed to microglia-derived EVs starting from the neuronal support and ending with the propagation of inflammation and neurodegeneration, confirming the crucial role of these organelles in tuning brain homeostasis. Despite the increasing number of studies reported on microglia-EVs, there is also a lot of fragmentation in the knowledge on the mechanism at the basis of their production and modification of their cargo. In this review, a collection of literature data about the surface and cargo proteins and lipids as well as the miRNA content of EVs produced by microglial cells has been reported. A special highlight was given to the works in which the EV molecular composition is linked to a precise biological function.


Science ◽  
2021 ◽  
Vol 371 (6533) ◽  
pp. eaay2784
Author(s):  
Margaux M. Pinney ◽  
Daniel A. Mokhtari ◽  
Eyal Akiva ◽  
Filip Yabukarski ◽  
David M. Sanchez ◽  
...  

The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with limited, local epistasis, and we establish the underlying physical mechanisms. This residue change occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues associated with organismal growth temperature across 1005 diverse bacterial enzyme families, suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular interactions, and interaction networks that appear to underly temperature adaptation.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Haoran Li ◽  
Wuling Zhou ◽  
Shiwei Sun ◽  
Tianlong Zhang ◽  
Tieqi Zhang ◽  
...  

Abstract Background Dysfunctional osteogenesis of bone marrow mesenchymal stem cells (BMSCs) plays an important role in osteoporosis occurrence and development. However, the molecular mechanisms of osteogenic differentiation remain unclear. This study explored whether microfibrillar-associated protein 5 (MFAP5) regulated BMSCs osteogenic differentiation. Methods We used shRNA or cDNA to knock down or overexpress MFAP5 in C3H10 and MC3T3-E1 cells. AR-S- and ALP-staining were performed to quantify cellular osteogenic differentiation. The mRNA levels of the classical osteogenic differentiation biomarkers Runx2, Col1α1, and OCN were quantified by qRT-PCR. Finally, we employed Western blotting to measure the levels of Wnt/β-catenin and AMPK signaling proteins. Results At days 0, 3, 7, and 14 after osteogenic induction, AR-S- and ALP-staining was lighter in MFAP5 knockdown compared to control cells, as were the levels of Runx2, Col1α1 and OCN. During osteogenesis, the levels of β-catenin, p-GSK-3β, AMPK, and p-AMPK were upregulated, while that of GSK-3β was downregulated, indicating that Wnt/β-catenin and AMPK signaling were activated. The relevant molecules were expressed at lower levels in the knockdown than control group; the opposite was seen for overexpressing cell lines. Conclusions MFAP5 regulates osteogenesis via Wnt/β‑catenin- and AMPK-signaling; MFAP5 may serve as a therapeutic target in patients with osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document