scholarly journals Instantaneous Oxygen Consumption and Muscle Stroke Work in Malacosoma Americanum During Pre-Flight Warm-Up

1987 ◽  
Vol 127 (1) ◽  
pp. 389-400 ◽  
Author(s):  
TIMOTHY M. CASEY ◽  
JERI R. HEGEL-LITTLE

Instantaneous rates of oxygen consumption (VOO2), thoracic temperature (Tth) and wing stroke frequency (n) were continuously measured at several ambient temperatures (Ta) during pre-flight warm-up and subsequent cooling in a small volume (30ml), open flow (240–300 ml min−1) respirometer. Heat production (HP) was tightly coupled to Tth and independent of Ta. The rate of change of HP (mWmin−1) was directly related to Ta. Total cost of warm-up was strongly, inversely related to Ta. The energetic cost of cooling was a small fraction of the total cost of warm-up. Increased energy expenditure occurred as a result of increases in both n and stroke work input. The latter increased from 0.58 to 1.1 mJ stroke− at low Tth (13–25°C) and was essentially constant at higher Tth (25–40°C). Wing stroke frequency increased continuously and linearly with Tth. In contrast to previous estimates based on heat exchange analyses, stroke work during warm-up was equivalent to values measured during free hovering flight. These data are consistent with the hypothesis that energy expenditure is maximized during warm-up.

1987 ◽  
Vol 133 (1) ◽  
pp. 317-327 ◽  
Author(s):  
BARBARA JOOS

Although fat is the principal fuel for flight in moths and butterflies, some use of carbohydrate fuels during activity would be predicted on energetic and biochemical grounds, particularly in nectivores. The present study evaluates the use of carbohydrate fuels during pre-flight warm-up in the endothermic sphinx moth Manduca sexta (L.). Carbohydrate content of moths was measured at intermediate points during the pre-flight warm-up cycle and at take-off. Muscle glycogen content declined during the initial phases of warm-up, whereas glucose and trehalose concentrations were unchanged. Abdominal carbohydrates were not mobilized during warm-up. Energy budget analysis suggests that glycogen oxidation supplies about 39% of the energy needed for the initial phase of warm-up and about 6% of the total cost of warm-up. Glycogen use during warm-up may be correlated with the capacity for endothermic warm-up at low ambient temperatures. Carbohydrates appear to be more important as fuels for activity in some lepidopterans than has been previously reported for other members of this diverse Order. Note: Present address: Department of Entomology and Economic Zoology, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, NJ 08903, USA.


1981 ◽  
Vol 94 (1) ◽  
pp. 119-135
Author(s):  
TIMOTHY M. CASEY ◽  
JERI R. HEGEL ◽  
CHARLENE S. BUSER

Thoracic temperature (Tth) during pre-flight warm-up increased linearly with time at all air temperatures (Ta). The rate of pre-flight warm-up increased from 3.3 to 12.7 °C/min between Ta's of 14 and 28 °C. Head temperature remained within a few °C of Tth during warm-up, while ventral abdominal temperature remained within a few °C of Ta. Pulsation rate of the dorsal vessel in the thorax increased directly with thoracic temperature. Wing-stroke frequency (n) varied from 15 s−1Tth = 16 °C to 58 s−1 at Tth = 40 °C and was similar at any given Tth between Ta's of 14 and 28 °C. While stroke amplitude varied significantly between warm-up and tethered flight, stroke frequency was similar for the two activities in the same Tth range. Calculated rates of heat production were tightly coupled to Tth and did not vary with Ta. The change in heat production during warm-up was dependent entirely on changes in frequency of muscle contraction. Stroke work was constant at 0.68 mW between Tth of 15 and 40 °C.


1985 ◽  
Vol 249 (2) ◽  
pp. R262-R265 ◽  
Author(s):  
B. J. Moore ◽  
S. J. Armbruster ◽  
B. A. Horwitz ◽  
J. S. Stern

The rate of oxygen consumption was measured in 2-day Zucker preobese (fa/fa), homozygous (Fa/Fa) lean, and lean rats of unknown genotype (Fa/?) over the ambient temperature range of 26-35 degrees C. Significant differences in body mass were found among the three groups at this early age, the preobese pups having the greatest body mass. To account for body mass differences, the oxygen consumption data were expressed in terms of metabolic body size (ml O2 consumed X g body mass-2/3 X h-1). This mass-independent rate of oxygen consumption was significantly lower in the preobese pups than in the homozygous lean (Fa/Fa) pups at both thermoneutral (33-34 degrees C) and cold (26-27 degrees C) ambient temperatures at which, respectively, minimal and maximal rates of oxygen consumption were observed. This reduction in energy expenditure occurs before the establishment of hyperphagia or decreased levels of activity in the preobese pups. These data support the view that attenuated energy expenditure is a significant contributor to the early development of obesity in the Zucker fatty rat and point to the possibility of defective brown adipose tissue-mediated thermogenesis in the preobese pup.


1993 ◽  
Vol 174 (1) ◽  
pp. 299-320 ◽  
Author(s):  
G. N. Stone

1. This study examines variation in thoracic temperatures, rates of pre-flight warm-up and heat loss in the solitary bee Anthophora plumipes (Hymenoptera; Anthophoridae). 2. Thoracic temperatures were measured both during free flight in the field and during tethered flight in the laboratory, over a range of ambient temperatures. These two techniques give independent measures of thermoregulatory ability. In terms of the gradient of thoracic temperature on ambient temperature, thermoregulation by A. plumipes is more effective before flight than during flight. 3. Warm-up rates and body temperatures correlate positively with body mass, while mass-specific rates of heat loss correlate negatively with body mass. Larger bees are significantly more likely to achieve flight temperatures at low ambient temperatures. 4. Simultaneous measurement of thoracic and abdominal temperatures shows that A. plumipes is capable of regulating heat flow between thorax and abdomen. Accelerated thoracic cooling is only demonstrated at high ambient temperatures. 5. Anthophora plumipes is able to fly at low ambient temperatures by tolerating thoracic temperatures as low as 25 sC, reducing the metabolic expense of endothermic activity. 6. Rates of heat generation and loss are used to calculate the thermal power generated by A. plumipes and the total energetic cost of warm-up under different thermal conditions. The power generated increases with thoracic temperature excess and ambient temperature. The total cost of warm-up correlates negatively with ambient temperature.


1998 ◽  
Vol 201 (11) ◽  
pp. 1847-1849
Author(s):  
SR Telford ◽  
PI Webb

We determined the energetic cost of copulation in both sexes of Alloporus uncinatus, a polygynandrous millipede in which copulation can last for several hours and involves physical restraint of the female by the male. We found an elevation in the rate of oxygen consumption by males and a depression in the rate of oxygen consumption by females during copulation. The rate of oxygen consumption of females, but not of males, was elevated immediately after copulation, indicating that females had built up and were repaying an oxygen debt. On this basis, we estimated energy expenditure during copulation to be 30 % above resting levels in males and 14 % above resting levels in females. As matings are frequent in this species in the wild throughout the 4 month breeding season, we suggest that the energetic demands of copulation are a previously overlooked potentially significant cost of reproduction in this species and in other invertebrate species with similar mating patterns.


1992 ◽  
Vol 171 (1) ◽  
pp. 409-422 ◽  
Author(s):  
EILEEN ZERBA ◽  
GLENN E. WALSBERG

The purpose of this study was to investigate the relationship between the allocation of exercise-generated heat and resting metabolic heat production during cold exposure. We tested the hypothesis that, during cold exposure, exercise-generated heat contributes to the fulfillment of the thermostatic requirement. Our assumption was that the thermostatic requirement is higher for exercising than for resting birds in still air because of the disruption of boundary and plumage insulation layers. We predicted that, during moderate exercise, the metabolic heat production of exercising birds would be higher than that for resting birds in still air but would not differ significantly from the metabolic heat generated by resting birds exposed to similar convective conditions. To test our hypothesis we measured whole-animal oxygen consumption of Gambel's quail (Callipepla gambelii Gambel) running in a circular metabolic chamber and at rest in still air at ambient temperatures below the animal's lower critical temperature. We compared these data to previous data for Gambel's quail at rest exposed to wind at a speed equal to the running speed used in our experiments. In addition to oxygen consumption measurements, we measured body temperatures of exercising and resting birds. The data supported our assumption and predictions. (1) Whole-body thermal resistance for exercising birds was lower than that for resting birds in still air, indicating that the thermostatic requirement was higher for exercising birds because of the disruption of boundary and plumage insulation layers. (2) Heat productions of exercising birds were significantly higher than those of resting birds in still air but were not significantly different from the heat productions of resting birds exposed to similar convective conditions. (3) Body temperatures were not significantly different between resting birds in still air and exercising birds. The mean body temperature of exercising birds, however, was 2°C higher than that of resting birds exposed to wind. We concluded that an exercising animal probably does not incur an energetic cost associated with locomotor activity at low ambient temperatures in comparison to an inactive animal exposed to a similar convective regime. Note: Present address: Department of Biology, University of Michigan, Ann Arbor, MI 48109–1048, USA.


1992 ◽  
Vol 70 (3) ◽  
pp. 408-411 ◽  
Author(s):  
Peter B. Frappell ◽  
Andrea Dotta ◽  
Jacopo P. Mortola

Aerobic metabolism (oxygen consumption, [Formula: see text], and carbon dioxide production, [Formula: see text]) has been measured in newborn rats at 2 days of age during normoxia, 30 min of hyperoxia (100% O2) and an additional 30 min of recovery in normoxia at ambient temperatures of 35 °C (thermoneutrality) or 30 °C. In normoxia, at 30 °C [Formula: see text] was higher than at 35 °C. With hyperoxia, [Formula: see text] increased in all cases, but more so at 30 °C (+20%) than at 35 °C (+9%). Upon return to normoxia, metabolism readily returned to the prehyperoxic value. The results support the concept that the normoxic metabolic rate of the newborn can be limited by the availability of oxygen. At temperatures below thermoneutrality the higher metabolic needs aggravate the limitation in oxygen availability, and the positive effects of hyperoxia on [Formula: see text] are therefore more apparent.Key words: neonatal respiration, oxygen consumption, thermoregulation.


1975 ◽  
Vol 53 (6) ◽  
pp. 679-685 ◽  
Author(s):  
J. B. Holter ◽  
W. E. Urban Jr. ◽  
H. H. Hayes ◽  
H. Silver ◽  
H. R. Skutt

Six adult white-tailed deer (Odocoileus virginianus borealis) were exposed to 165 periods of 12 consecutive hours of controlled constant ambient temperature in an indirect respiration calorimeter. Temperatures among periods varied from 38 to 0 (summer) or to −20C (fall, winter, spring). Traits measured were energy expenditure (metabolic rate), proportion of time spent standing, heart rate, and body temperature, the latter two using telemetry. The deer used body posture extensively as a means of maintaining body energy equilibrium. Energy expenditure was increased at low ambient temperature to combat cold and to maintain relatively constant body temperature. Changes in heart rate paralleled changes in energy expenditure. In a limited number of comparisons, slight wind chill was combatted through behavioral means with no effect on energy expenditure. The reaction of deer to varying ambient temperatures was not the same in all seasons of the year.


2017 ◽  
Vol 12 (4) ◽  
pp. 504-513 ◽  
Author(s):  
Charles-Mathieu Lachaume ◽  
François Trudeau ◽  
Jean Lemoyne

The purpose of this study was to investigate the energy expenditure and heart rate responses elicited in elite male midget ice hockey players during small-sided games. Nine players (aged 15.89 ± 0.33 years) participated in the study. Maximal progressive treadmill testing in the laboratory measured the relationship of oxygen consumption ([Formula: see text]) to heart rate before on-ice assessments of heart rate during six different small-sided games: 1v1, 2v2, 2v2 with support player, 3v3 with support player, 3v3 with transitions, and 4v4 with two support players. Heart rate was recorded continuously in each game. 3v3 T small-sided game was the most intense for all four intensity markers. All six small-sided games reached 89% HRmax or more with heart rate peaks in active effort repetition. These findings demonstrate that such small-sided games are considered as high intensity games and are an effective training method for ice hockey players.


Author(s):  
Andrew N. Bosch ◽  
Kirsten C. Flanagan ◽  
Maaike M. Eken ◽  
Adrian Withers ◽  
Jana Burger ◽  
...  

Elliptical trainers and steppers are proposed as useful exercise modalities in the rehabilitation of injured runners due to the reduced stress on muscles and joints when compared to running. This study compared the physiological responses to submaximal running (treadmill) with exercise on the elliptical trainer and stepper devices at three submaximal but identical workloads. Authors had 18 trained runners (male/female: N = 9/9, age: mean ± SD = 23 ± 3 years) complete randomized maximal oxygen consumption tests on all three modalities. Submaximal tests of 3 min were performed at 60%, 70%, and 80% of peak workload individually established for each modality. Breath-by-breath oxygen consumption, heart rate, fuel utilization, and energy expenditure were determined. The value of maximal oxygen consumption was not different between treadmill, elliptical, and stepper (49.3 ± 5.3, 48.0 ± 6.6, and 46.7 ± 6.2 ml·min−1·kg−1, respectively). Both physiological measures (oxygen consumption and heart rate) as well as carbohydrate and fat oxidation differed significantly between the different exercise intensities (60%, 70%, and 80%) but did not differ between the treadmill, elliptical trainer, and stepper. Therefore, the elliptical trainer and stepper are suitable substitutes for running during periods when a reduced running load is required, such as during rehabilitation from running-induced injury.


Sign in / Sign up

Export Citation Format

Share Document