Thermodynamic design of a reciprocating Joule cycle engine

Author(s):  
M. A. Bell ◽  
T Partridge

This paper describes a first-order model of a Reciprocating Joule Cycle (RJC) engine, which is then used to investigate its thermodynamic design with a view to establishing its optimum performance for a given set of operating conditions. The RJC engine is essentially the reciprocating counterpart of the gas turbine. Its performance is determined by the characteristics of a reciprocating, as opposed to a rotodynamic, compressor and expander. The thermodynamic cycle investigated incorporates regenerative heat exchange. An air standard model modified to include the effects of friction, combustion, clearance volumes, leakage and pressure drops, shows that the performance of the RJC engine is strongly dependent on its operating pressure ratio and dependent to a much lesser extent on its expander to compressor swept volume ratio. It is shown that a thermal efficiency approaching 50 per cent might be achievable under realistic conditions. Using a maximum operating temperature of 1300 K, optimum thermal efficiency with a high specific work output occurs when its nominal operating pressure ratio is in the range 6 to 8, and its expander to compressor swept volume ratio is in the range 2 to 3. The RJC engine is proposed as a suitable prime mover for micro-CHP systems, small stand-alone power units, or hybrid vehicles.

1989 ◽  
Vol 111 (4) ◽  
pp. 400-407 ◽  
Author(s):  
M. J. Morris ◽  
J. C. Dutton

The results of an experimental investigation into the flowfield characteristics of butterfly valves under compressible flow operating conditions are reported. The experimental results include Schlieren and surface flow visualizations and flowfield static pressure distributions. Two valve disk shapes have been studied in a planar, two-dimensional test section: a generic biconvex circular arc profile and the midplane cross-section of a prototype butterfly valve. The valve disk angle and operating pressure ratio have also been varied in these experiments. The results demonstrate that under certain conditions of operation the butterfly valve flowfield can be extremely complex with oblique shock waves, expansion fans, and regions of flow separation and reattachment. In addition, the sensitivity of the valve disk surface pressure distributions to the local geometry near the leading and trailing edges and the relation of the aerodynamic torque to flow separation and reattachment on the disk are shown.


Author(s):  
Yousef M. Abdel-Rahim

Present paper studies the optimal characteristics of the two-stage cascade R134A refrigeration system with flash and mixing chambers over its operating ranges of all cycle controlling parameters. The COP, total heat rate in Qin, total work rate in Win and second law efficiency ηII are used as cycle performance parameters. Compared to the practically-limited other rate-based optimization methods and to other experimentally-optimized specific cases of cycle parameters, the application of Monte Carlo method has proved to be very effective for optimizing the cycle performance in its global sense over all cycle controlling parameters. Correlations relating performance and cycle controlling parameters are presented and discussed. Study shows that COP of the cycle can reach a value of 8 at intermediate pressure P2 of about 200 kPa, and a maximum value of 9.92 at about 370 kPa and 720 kPa, beyond which COP goes as low as 4.2. P2 alone has no significant effect on Qin, Win and ηII unless values of other controlling parameters are specified. Values of Qin, Win and ηII can reach as high as 94 kW, 23 kW and 0.85 and as low as 6.8 kW, 1.1 kW and 0.57 respectively depending on other cycle parameters. Neither pressure ratio nor volume ratio of the HP compressor has any effect on Qin, Win or ηII. However, the ratio of inlet to exit temperatures of the condenser has the greatest effect on both ηII and the volumetric specific work of the HP compressor, which is about double the value of the volumetric specific work of the LP compressor. Study shows an almost linear relationship between the two mass flow rates in the upper and lower loops of the cycle, where its value in the lower LP loop is about 75% that in the upper HP loop. Findings of the present work as well as the elaborate application of Monte Carlo method to real cycles can greatly open the way for reducing the trade-off design methods currently used in developing such systems as well as direct the useful experimentations and assessment of such designed systems.


Author(s):  
Joachim Kurzke

Realistic compressor maps are the key to high quality gas turbine performance calculations. When modeling the performance of an existing engine then these maps are usually not known and must be approximated by adapting maps from literature to either measured data or to other available information. There are many publications describing map adaptation processes, simple ones and more sophisticated physically based scaling rules. There are also reports about using statistics, genetic algorithms, neural networks and even morphing techniques for re-engineering compressor maps. This type of methods does not consider the laws of physics and consequently the generated maps are valid at best in the region in which they have been calibrated. This region is frequently very narrow, especially in case of gas generator compressors which run in steady state always on a single operating line. This paper describes which physical phenomena influence the shape of speed and efficiency lines in compressor maps. For machines operating at comparatively low speeds (so that the flow into each stage is subsonic), there is usually considerable range between choke and stall corrected flow. As the speed of the machine is increased the range narrows. For high-speed stages with supersonic relative flow into the rotor the efficiency maximum is where the speed line turns over from vertical to lower than maximum corrected flow. At this operating condition the shock is about to detach from the leading edge of the blades. The flow at a certain speed can also be limited by choking in the compressor exit guide vanes. For high pressure ratio single stage centrifugal compressors this is a normal case, but it can also happen with low pressure ratio multistage boosters of turbofan engines, for example. If the compressor chokes at the exit, then the specific work remains constant along the speed line while the overall pressure ratio varies and that generates a very specific shape of the efficiency contour lines in the map. Also in other parts of the map, the efficiency varies along speed lines in a systematic manner. Peculiar shapes of specific work and corrected torque lines can reveal physically impossibilities that are difficult to see in the standard compressor map pictures. Compressor maps generated without considering the inherent physical phenomena can easily result in misleading performance calculations if used at operating conditions outside of the region where they have been calibrated. Whatever map adaptation method is used: the maps created in such a way should be checked thoroughly for violations of the underlying laws of compressor physics.


Author(s):  
Rachana Vidhi ◽  
Sarada Kuravi ◽  
Saeb Besarati ◽  
E. K. Stefanakos ◽  
D. Yogi Goswami ◽  
...  

This paper reports on the performance of various organic refrigerants and their mixtures as working fluids for power generation in a supercritical Rankine cycle (SRC) from geothermal sources. Organic fluids that have zero or very low ozone depletion potential and are environmentally safe are selected for this study. Geothermal source temperature is varied from 125–200°C, and the cooling water temperature is changed from 10–20°C. The effect of varying operating conditions on the performance of the thermodynamic cycle has been analyzed. Operating pressure of the cycle has been optimized for thermal efficiency for each fluid at each source temperature. The condensation pressure is determined by the cooling condition and is kept fixed for each condensation temperature. Energy and exergy efficiencies of the cycle have been obtained for the pure fluids as a function of heat source temperature. Mixtures of organic fluids have been analyzed and effect of composition on performance of the thermodynamic cycle has been studied. It is observed that thermal efficiency over 20% can be achieved for 200°C heat source temperature and the lowest cooling temperature. When mixtures are considered as working fluids, the thermal efficiency of the cycle is observed to remain between the thermal efficiencies of the constituent fluids.


Author(s):  
M. H. Padzillah ◽  
M. Yang ◽  
W. Zhuge ◽  
R. F. Martinez-Botas

To achieve better flow guidance into the turbine blades, nozzle vanes were added as an integral part of the stator design. However, the full investigation that directly addresses the comparison between the two turbine arrangements under pulsating flow conditions is still not available in literature. This work represents the first attempt to observe differences, particularly in the circumferential flow angle distribution between both volute arrangements under steady and pulsating flow operating conditions. Experimentally validated Computational Fluid Dynamics (CFD) simulations have been conducted in order to achieve this aim. As the experimental data within the Turbocharger Group at Imperial College are extensive, the simulation procedures are optimized to achieve the best compromise between the computational cost and prediction accuracy. A single operating pressure ratio is selected for the steady and pulsating environment in order to provide consistent comparison for both volute arrangements. The simulation results presented in this work are conducted at the turbine speed of 48000rpm and 60Hz flow frequency for the pulsating flow simulations. The results indicated that there are significant differences in the flow angle behavior for both volutes regardless of the flow conditions (steady or unsteady). It is also found that the differences in flow angle distribution between increasing and decreasing pressure instances during pulsating flow operation is more prominent in the nozzleless volute than its nozzled counterpart.


Author(s):  
Rex K.C Amadi ◽  
Charles David

This research is based on the thermodynamic performance of a gas turbine power plant.  It considered the variation of operating conditions, i.e. the ambient temperature, the compressor outlet temperature, pressure ratio, etc. on the performance of the gas turbine thermal efficiency, turbine work, compressor work, etc. which were derived and analyzed.  The Gross (higher) calorific values at constant pressure () heat of combustion in a flow process from state 1 to state 2 was considered and used to analyze our thermal efficiency.  The results show that the ambient temperature and air to fuel ratio strongly influence the turbine work, compressor work and thermal efficiency.  In addition, the thermal efficiency and power decreases linearly with increase of the ambient temperature.  However, the efficiency analyzed when the calorific parameters were considered was higher than the efficiency when the basic thermodynamic theories (first and second law principles) were used.  The first ranges between 31% to 33, while the second ranges between 28% to 32% under the same ambient temperature conditions


1980 ◽  
Vol 102 (4) ◽  
pp. 957-963 ◽  
Author(s):  
H. Hempel ◽  
R. Friedrich ◽  
S. Wittig

Extending data obtained from hot gas cascade measurements on the cooling effectiveness and profile loss coefficients of full coverage film-cooled blading, use is made of similarity considerations to determine the heat transfer characteristics under actual engine conditions. Of primary interest are stationary gas turbines. Calculations are made for a four-stage single shaft gas turbine with air preheat and common component efficiencies. As a representative result it is found that for a pressure ratio of π = 10 a relative cooling air flow of approximately 8 percent will be required in rising the temperature from 1173 to 1573 K. The resulting relative improvement of the thermal efficiency is 24 percent and that of the specific work about 70 percent.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Dongzhi Guo ◽  
Jinsheng Gao ◽  
Alan J. H. McGaughey ◽  
Gary K. Fedder ◽  
Matthew Moran ◽  
...  

A new Stirling microrefrigeration system composed of arrays of silicon MEMS cooling elements has been designed and evaluated. The cooling elements are to be fabricated in a stacked array on a silicon wafer. A regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms, which are driven electrostatically. Air at a pressure of 2 bar is the working fluid and is sealed in the system. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally and out of phase such that heat is extracted to the expansion space and released from the compression space. Parametric study of the design shows the effects of phase lag between the hot space and cold space, swept volume ratio between the hot space and cold space, and dead volume ratio on the cooling power. Losses due to regenerator nonidealities are estimated and the effects of the operating frequency and the regenerator porosity on the cooler performance are explored. The optimal porosity for the best system coefficient of performance (COP) is identified.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 515
Author(s):  
Kai-Yuan Lai ◽  
Yu-Tang Lee ◽  
Ta-Hua Lai ◽  
Yao-Hsien Liu

This study examined the trilateral flash cycle characteristics (TFC) and partially evaporating cycle (PEC) using a low-grade heat source at 80 °C. The evaporation temperature and mass flow rate of the working fluids and the expander inlet’s quality were optimized through pinch point observation. This can help advance methods in determining the best design points and their operating conditions. The results indicated the partially evaporating cycle could solve the high-volume ratio problem without sacrificing the net power and thermal efficiency performance. When the system operation’s saturation temperature decreased by 10 °C, the net power, thermal efficiency, and volume ratio of the trilateral flash cycle system decreased by approximately 20%. Conversely, with the same operational conditions, the net power and thermal efficiency of the partially evaporating cycle system decreased by only approximately 3%; however, the volume ratio decreased by more than 50%. When the system operating temperature was under 63 °C, each fluid’s volume ratio could decrease to approximately 5. The problem of high excessive expansion would be solved from the features of the partially evaporating cycle, and it will keep the ideal power generation efficiency and improve expander manufacturing.


Author(s):  
Mohamed A. Gadalla

The retrofitting projects have been considered in many countries to convert simple gas turbine units into more advanced cycle units with higher efficiency and higher output. Among many proven technologies, such as inlet air cooling, intercooling, regeneration, reheat and steam injection gas turbine etc., pulse combustion is one of the promising technologies in boosting both the output capacity and thermal efficiency, and reducing carbon and nitrogen oxides emissions without additional pollution control equipment. This paper presents the analysis of potential and real benefits of pulse combistion technology applied in the combustion process of a simple gas turbine cycle under different operating conditions. In addition, this study investigates the utilization of converting part of chemical energy of fuel into pressure energy in the gas turbine pulse combustion chamber. The influence of the maximum pressure rise due to pulse combustion (pre-compression parameter), the ratio of combustion heat released in the isochoric process, maximum cycle temperature, and compressor pressure ratio on the performance paramenters such as net work output, cycle thermal efficiency, and fuel consumption were also investigated. Finally, the results of comparative analyses between a simple gas turbine cycle utilizing a pulse combustor and a conventional cycle show the thermodynamic advantages of applying this technology in simple gas turbine power cycles.


Sign in / Sign up

Export Citation Format

Share Document