Effect of Plate Buckling on Orifice Meter Accuracy

1975 ◽  
Vol 17 (6) ◽  
pp. 330-337 ◽  
Author(s):  
P. Jepson ◽  
R. Chipchase

Experimental and theoretical data are presented on the effect of plate buckling on the flow measurement accuracy of an orifice meter system. Tests were performed on plastically buckled orifice plates in an 8 in (203 mm) metering system using natural gas as the working fluid. The test pipe Reynolds numbers were 0.36 times 106 and 5.2 times 106. A method is also presented to predict the flow metering errors due to plate buckling, which gives good agreement with the experimental results obtained on plastically buckled plates. The theory is extended to cover the flow metering errors caused by the elastic deformation of orifice plates under normal working differential pressures. A formula is presented which relates the metering errors to the applied differential pressure and the mechanical properties of simply supported orifice plates.

2016 ◽  
Vol 30 (06) ◽  
pp. 1650018 ◽  
Author(s):  
A. K. Kushwaha ◽  
R. Khenata ◽  
S. Bin Omran

In this paper, interatomic interactions, zone-center phonon frequencies, mechanical properties, sound velocities and Debye temperature of indium thiospinels MIn2S4(M = Cd, Zn and Mg) have been calculated using rigid-ion model. We found that the first neighbor interaction is stronger than the second neighbor interaction. We have compared our calculated results with the available experimental and theoretical data and find good agreement with the experimental results.


2012 ◽  
Vol 629 ◽  
pp. 676-681 ◽  
Author(s):  
B. Wang ◽  
Y. Cui ◽  
W. Liu ◽  
X. Luo

In ultrasonic flow metering, the inner pipe wall will be distorted by transducer’s installation, and the velocity profile of the meter will be different from that in a long straight pipe located in front of or behind the meter section. Changes in profile will finally influence the flow measurement accuracy. This paper shows a multi-path ultrasonic flow meter with its transducers installed at different positions. Our purpose is to find the best transducer installation position and to study the influence of path numbers and pipe diameters on the flow measurement accuracy at the best installation position. With a computational fluid dynamics (CFD) analysis, velocity profiles are calculated. Negative bias errors are obtained at all the three of the common installation positions. Similar phenomenon has also been observed in a real field experiment. The reasons for the negative bias error have also been analyzed.


2012 ◽  
Vol 197 ◽  
pp. 73-77 ◽  
Author(s):  
Boualem Laribi ◽  
Abdellah Abdellah Hadj

This article discusses the development and the establishment of turbulent flow downstream of disturbers like a valve 50% open, valve 70% open, Tee and 90° double bend in perpendicular planes. Associated with these disturbers, a perforated plate flow conditioner is installed to examine his performances to produce the fully developed pipe flow as suggested by standards ISO5167 and AGA3. The study focused mainly on the numerical analysis of the velocity contours at several axial stations downstream the disturbers. For the simulation, code CFD Fluent was used. The study of the disturbed flow is examined with three Reynolds numbers. The results show a very good prediction of the CFD code Fluent for the flow development downstream the disturbers and conditioner which makes the code very efficient for conception of a new flow conditioner not described by the standards. It was also found that the valve 50% open could be considered a reference disturber for analyzing the development of turbulent flows. As interesting results, is the effectiveness of the perforated plate to produce the flow developed pipe flow at about z/D=10 downstream the disturber. This result is very important for flow measurement accuracy as suggested by the standards. An experimental study is needed to validate these results.


2020 ◽  
pp. 30-35
Author(s):  
Gurami N. Akhobadze

In the age of digital transformation of production processes in industry and science the development and design of intelligent flow sensors for granular and liquid substances transferring through pipelines becomes more important. With this in view new approaches for improving the accuracy of microwave flowmeters are proposed. Taking into account the characteristics ofelectromagnetic waves propagating through a pipeline, a wave scattered by inhomogeneities of the controlled medium is analyzed. Features of the transformation of the polarized scattered wave limiting the geometric dimensions of the pipeline and optimizing the values of the useful scattered signal are revealed. Expediency of collection of the information signal with orthogonal polarization of the scattered wave and through a directional coupler is substantiated. The method of estimating the measurement accuracy with reference to the signal-to-noise ratio at the input of the processing device is given. The research results can be used in cryogenic machine engineering to measure volume and mass flows of liquid cryogenic products.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 830
Author(s):  
Julio Cesar Martinez-Garcia ◽  
Alexandre Serraïma-Ferrer ◽  
Aitor Lopeandía-Fernández ◽  
Marco Lattuada ◽  
Janak Sapkota ◽  
...  

In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


2013 ◽  
Vol 351-352 ◽  
pp. 782-785
Author(s):  
Yong Bing Liu ◽  
Xiao Zhong Zhang

Established the mechanical model of simply supported deep beam, calculation and analysis of simple supported deep beams by using finite element analysis software ANSYS, simulated the force characteristics and work performance of the deep beam. Provides the reference for the design and construction of deep beams.


2013 ◽  
Vol 353-356 ◽  
pp. 3215-3219
Author(s):  
Shan Qing Li ◽  
Hong Yuan

The quasi-Greens function method (QGFM) is applied to solve the bending problem of simply supported polygonal shallow spherical shells on Pasternak foundation. A quasi-Greens function is established by using the fundamental solution and the boundary equation of the problem. And the function satisfies the homogeneous boundary condition of the problem. Then the differential equation of the problem is reduced to two simultaneous Fredholm integral equations of the second kind by the Greens formula. The singularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The comparison with the ANSYS finite element solution shows a good agreement, and it demonstrates the feasibility and efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document