scholarly journals Characterization of culturable airborne bacteria and antibiotic susceptibility profiles of indoor and immediate-outdoor environments of a research institute in Ghana

2018 ◽  
Vol 1 ◽  
pp. 17 ◽  
Author(s):  
Isawumi Abiola ◽  
Adiza Abass ◽  
Samuel Duodu ◽  
Lydia Mosi

Background:The study was conducted to determine the bacterial composition and antibiotic susceptibility profiles of a research institute at the University of Ghana where workers and students spend about 70-85% of their lives in indoor and immediate-outdoor environments. This is imperative as one-third of the recognized infectious diseases are transmitted through airborne-route. Furthermore, the increasing rate of bacterial antimicrobial resistance associated with such environments poses serious public health challenges.Methods:A total of 42 airborne samples were collected from eight major sites at the Department of Biochemistry, Cell and Molecular Biology (BCMB), using passive bacterial sampling techniques. Standard phenotypic microbiological procedures were used to characterize the isolates. Antibiotic susceptibility profiles were determined using standard disk diffusion method and guidelines of Clinical and Laboratory Standards Institute (CLSI).Results:Four groups of bacterial isolates were identified from the total samples collected with Gram positive bacilli as the most common. All the isolates showed resistance to beta lactam and sulfonamide classes of antibiotics with full resistance (100%) to ampicillin and penicillin. In total, seven different anti-biotypes were observed with the highest susceptibility displayed towards tetracycline and gentamycin. Significantly, the various air sampling sites of the institute indicated the presence of bacteria with the majority showing multiple antibiotics resistance.Conclusions:Although the recovery of bacteria from supposed sterile environments calls for attention, the observed low contamination rate as compared to the WHO standard suggests a minimum risk of exposure of students and workers to airborne microbial contamination.

2018 ◽  
Vol 1 ◽  
pp. 17
Author(s):  
Isawumi Abiola ◽  
Adiza Abass ◽  
Samuel Duodu ◽  
Lydia Mosi

Background:The study was conducted to determine the bacterial composition and antibiotic susceptibility profiles of a research institute at the University of Ghana where workers and students spend about 70-85% of their lives in indoor and immediate-outdoor environments. This is imperative as one-third of the recognized infectious diseases are transmitted through airborne-route. Furthermore, the increasing rate of bacterial antimicrobial resistance associated with such environments poses serious public health challenges.Methods:A total of 42 airborne samples were collected from eight major sites at the Department of Biochemistry, Cell and Molecular Biology (BCMB), using passive bacterial sampling techniques. Standard phenotypic microbiological procedures were used to characterize the isolates. Antibiotic susceptibility profiles were determined using standard disk diffusion method and guidelines of Clinical and Laboratory Standards Institute (CLSI).Results:Four groups of bacterial isolates were identified from the total samples collected with Gram positive bacilli as the most common. All the isolates showed resistance to beta lactam and sulfonamide classes of antibiotics with full resistance (100%) to ampicillin and penicillin. In total, seven different anti-biotypes were observed with the highest susceptibility displayed towards tetracycline and gentamycin. Significantly, the various air sampling sites of the institute indicated the presence of bacteria with the majority showing multiple antibiotics resistance.Conclusions:Although the recovery of bacteria from supposed sterile environments calls for attention, the observed low contamination rate as compared to the WHO standard suggests a minimum risk of exposure of students and workers to airborne microbial contamination.


Author(s):  
Munaf Aal-Aaboda ◽  
Mohammed R. Al-Notazy

The present study was targeted to examine the prevalence of multi-drug resistant Staphylococcusaureus,which has been carried out in Misan, Iraq at a local hospital from February 2016 to January 2017.A hundred and eighty ear swabs have been obtained from patients with ear infections with or without discharges. Culturing and identifying the causative agents, as well as the antibiotic sensitivity profile, have been done on the specimens. Swabs were collected under sterile conditions and instantly transferred to the laboratory sealed in brain heart broth tubes. The initial isolation was done on selective media to S. aureus(mannitol salt agar) at a temperature of 37°C for 24 - 48 hours and then the biochemical tests and identification were done in accordance with the standard monotonous techniques. Antibiotic susceptibility tests were done by the disk diffusion method. A hundred and forty-four isolates diagnosed with Staphylococcus aureusand eighteen isolates as other bacteria. S.aureusisolates tested for antibiotic susceptibility showed high resistance to ampicillin, carbenicillin and amoxicillin, mild resistance to co-trimoxazole and were susceptible to norfloxacin, rifampicin, and ciprofloxacin.Additionally, S.aureusisolates showed multiple antibiotic resistance (MAR). The MAR index of the isolates found to range between 0.35 and 0.7. In conclusion, an ear infection is mostly caused by Staphylococcus aureusand most of these isolates showed a high level of antibiotics resistance, which eventually may lead to too many health-related consequences in Misan, Southern Iraq and expose the needs for further studies to lessen the resistance to antibiotics.


2013 ◽  
Vol 13 (1) ◽  
pp. 45-48
Author(s):  
Shamweel Ahmed ◽  
Mohmammed Nawaf Al-Harbi

Pseudomonas aeruginosa is one of the most common gram-negative bacteria. identified in the clinical specimens of hospital admitted patients. A major problem in P. aeruginosa infection may be that this pathogen exhibits a high degree of resistance to a broad spectrum of antibiotics. The study aimed to isolate and determine the antimicrobial susceptibility patterns of the P. aeruginosa. This prospective study was done over a period of six months. Forty one clinical isolates of Pseudomonas aeruginosa (P. aeruginosa) were isolated from sputum specimens of the patients suspected of having respiratory tract infection. The antibiotic susceptibility profiles of all the isolates were determined using disk diffusion method as recommended by Clinical Laboratory Standards Institute. Ciprofloxacin was found to be the most effective antimicrobial agent with 85.4% susceptibility followed by imipenem (75.6%), aminoglycosides (amikacin, 95.1% and gentamicin, 90.3%), and the beta-lactams (cefepime 65.8%, ceftazidime, 51.2%). Piperacillin showed the maximum resistance (46.3%) followed by Aztreonam (36.6%). Regular antimicrobial susceptibility surveillance is essential for area-wise monitoring of the resistance patterns. An effective national and state level antibiotic policy and draft guidelines should be introduced to preserve the effectiveness of antibiotics and for better patient management. DOI: http://dx.doi.org/10.3329/bjms.v13i1.17428 Bangladesh Journal of Medical Science Vol. 13 No. 01 January2014: 45-48. Table I & Figure I added on 02 February 2014.


Author(s):  
Joel Manyahi ◽  
Sabrina J. Moyo ◽  
Said Aboud ◽  
Nina Langeland ◽  
Bjørn Blomberg

AbstractDifficult-to-treat infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are of concern in people living with HIV infection as they are more vulnerable to infection. We aimed to identify molecular characteristics of MRSA colonizing newly diagnosed HIV-infected adults in Tanzania. Individuals newly diagnosed with HIV infection were recruited in Dar es Salaam, Tanzania, from April 2017 to May 2018, as part of the randomized clinical trial CoTrimResist (ClinicalTrials.gov identifier: NCT03087890). Nasal/nasopharyngeal isolates of Staphylococcus aureus were susceptibility tested by disk diffusion method, and cefoxitin-resistant isolates were characterized by short-reads whole genome sequencing. Four percent (22/537) of patients carried MRSA in the nose/nasopharynx. MRSA isolates were frequently resistant towards gentamicin (95%), ciprofloxacin (91%), and erythromycin (82%) but less often towards trimethoprim-sulfamethoxazole (9%). Seventy-three percent had inducible clindamycin resistance. Erythromycin-resistant isolates harbored ermC (15/18) and LmrS (3/18) resistance genes. Ciprofloxacin resistance was mediated by mutations of the quinolone resistance-determining region (QRDR) sequence in the gyrA (S84L) and parC (S80Y) genes. All isolates belonged to the CC8 and ST8-SCCmecIV MRSA clone. Ninety-five percent of the MRSA isolates were spa-type t1476, and one exhibited spa-type t064. All isolates were negative for Panton-Valentine leucocidin (PVL) and arginine catabolic mobile element (ACME) type 1. All ST8-SCCmecIV-spa-t1476 MRSA clones from Tanzania were unrelated to the globally successful USA300 clone. Carriage of ST8 MRSA (non-USA300) was common among newly diagnosed HIV-infected adults in Tanzania. Frequent co-resistance to non-beta lactam antibiotics limits therapeutic options when infection occurs.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 930
Author(s):  
Delia Gambino ◽  
Sonia Sciortino ◽  
Sergio Migliore ◽  
Lucia Galuppo ◽  
Roberto Puleio ◽  
...  

The presence of Salmonella spp. in marine animals is a consequence of contamination from terrestrial sources (human activities and animals). Bacteria present in marine environments, including Salmonella spp., can be antibiotic resistant or harbor resistance genes. In this study, Salmonella spp. detection was performed on 176 marine animals stranded in the Sicilian coasts (south Italy). Antibiotic susceptibility, by disk diffusion method and MIC determination, and antibiotic resistance genes, by molecular methods (PCR) of the Salmonella spp. strains, were evaluated. We isolated Salmonella spp. in three animals, though no pathological signs were detected. Our results showed a low prevalence of Salmonella spp. (1.7%) and a low incidence of phenotypic resistance in three Salmonella spp. strains isolated. Indeed, of the three strains, only Salmonella subsp. enterica serovar Typhimurium from S. coeruleoalba and M. mobular showed phenotypic resistance: the first to ampicillin, tetracycline, and sulphamethoxazole, while the latter only to sulphamethoxazole. However, all strains harbored resistance genes (blaTEM, blaOXA, tet(A), tet(D), tet(E), sulI, and sulII). Although the low prevalence of Salmonella spp. found in this study does not represent a relevant health issue, our data contribute to the collection of information on the spread of ARGs, elements involved in antibiotic resistance, now considered a zoonosis in a One Health approach.


2015 ◽  
Vol 78 (1) ◽  
pp. 65-71 ◽  
Author(s):  
MOHD IKHSAN KHALID ◽  
JOHN YEW HUAT TANG ◽  
NABILA HUDA BAHARUDDIN ◽  
NASIHA SHAKINA RAHMAN ◽  
NURUL FAIZZAH RAHIMI ◽  
...  

The present study was conducted to investigate the prevalence and antibiotic resistance among Campylobacter jejuni in ulam at farms and retail outlets located in Kuala Terengganu, Malaysia. A total of 526 samples (ulam, soil, and fertilizer) were investigated for the presence of C. jejuni and the gene for cytolethal distending toxin (cdt) by using a multiplex PCR method. Antibiotic susceptibility to 10 types of antibiotics was determined using the disk diffusion method for 33 C. jejuni isolates. The average prevalence of contaminated samples from farms, wet markets, and supermarkets was 35.29, 52.66, and 69.88%, respectively. The cdt gene was not detected in 24 of the 33 C. jejuni isolates, but 9 isolates harbored cdtC. Antibiotic resistance in C. jejuni isolates was highest to penicillin G (96.97% of isolates) followed by vancomycin (87.88%), ampicillin (75.76%), erythromycin (60.61%), tetracycline (9.09%), amikacin (6.06%), and norfloxacin (3.03%); none of the isolates were resistant to ciprofloxacin, enrofloxacin, and gentamicin. In this study, C. jejuni was present in ulam, and some isolates were highly resistant to some antibiotics but not to quinolones. Thus, appropriate attention and measures are required to prevent C. jejuni contamination on farms and at retail outlets.


2019 ◽  
Vol 6 (1) ◽  
pp. e000369 ◽  
Author(s):  
Magdalena Nüesch-Inderbinen ◽  
Nadine Käppeli ◽  
Marina Morach ◽  
Corinne Eicher ◽  
Sabrina Corti ◽  
...  

BackgroundEscherichia coli is an important aetiological agent of bovine mastitis worldwide.MethodsIn this study, 82 E. coli from bovine mastitis milk samples from 49 farms were analysed for their genetic diversity using phylogenetic grouping and multilocus sequence typing. The isolates were examined by PCR for a selection of virulence factors (VFs). Antimicrobial susceptibility profiles were assessed using the disk diffusion method.ResultsThe most prevalent phylogroups were group B1 (41.5 per cent of the isolates) and group A (30.5 per cent). A variety of 35 different sequence types (STs) were identified, including ST1125 (11 per cent), ST58 (9.8 per cent), ST10 (8.5 per cent) and ST88 (7.3 per cent). Aggregate VF scores (the number of unique VFs detected for each isolate) ranged from 1 to 3 for 63.4 per cent of the isolates and were at least 4 for 12.2 per cent. For 24.4 per cent of the isolates, the score was 0. The three most frequent VFs were traT, fyuA and iutA. The majority (72 per cent) of the isolates harboured traT. The majority (68.3 per cent) of the isolates were fully susceptible to all antimicrobials tested, with 22 per cent resistant to ampicillin and 14.6 per cent to tetracycline. Resistance rates were low for gentamicin (3.7 per cent), amoxicillin/clavulanic acid (2.4 per cent) and ceftiofur (1.2 per cent), respectively.ConclusionAmong the study’s sample population, E. coli strains were genotypically diverse, even in cows from the same farm, although some STs occurred more frequently than others. Susceptibility to clinically relevant compounds remained high.


2016 ◽  
Vol 7 (5) ◽  
pp. 47-51 ◽  
Author(s):  
Yadav Prasad Joshi ◽  
Shreejeet Shrestha ◽  
Russell Kabir ◽  
Anita Thapa ◽  
Parbati Upreti ◽  
...  

Background:Urinary tract infection is the most common bacterial infections in humans and serious health problem in many parts of the world. It has become more complicated in treatment due to different pathogens and increasing resistant to antimicrobial agents. This study aims to investigate the prevalence of urinary tract infection and antibiotic susceptibility patterns of pathogens among the patients attending in B & B hospital Nepal.Materials and Methods:A hospital based cross sectional study was conducted in between April 2010 to March 2011. Urine samples were collected from clinically suspected patients and tested bacteriologically using standard procedures. Antimicrobial susceptibility test was performed for isolated pathogen using the Kirby-Bauer disk diffusion method according to Clinical and Laboratory Standards Institute guidelines.Results:Out of 1260 examined specimens 25.24 % were positive and majority 61.64% were females.  The most common pathogens isolated were Escherichia coli (66.67%), Enterococcus (7.55%) and Staphylococcus (6.60 %). The drug resistant among the positive cases were reported. The highest resistant of positive cases was found with Cefexime (87.88%) and Enterococcus with Ampicillin (66.67%) and Staphyllococcus with Cloxacillin (66.67%). The highest susceptibility was for Vancomycin and Ampicillin i.e. 33.33% in each.Conclusion:The findings showed that E. coli isolates were the predominant pathogen and the presence of bacterial isolates with very high resistance to the commonly prescribed drugs. As drug resistance among bacterial pathogens is an evolving process and serious issue. Therefore, routine surveillance and monitoring studies should be conducted to provide physicians knowledge on the updated and most effective empirical treatment of UTIs. Asian Journal of Medical Sciences Vol.7(5) 2016 47-51


2010 ◽  
Vol 4 (04) ◽  
pp. 239-242 ◽  
Author(s):  
Supriya Upadhyay ◽  
Malay Ranjan Sen ◽  
Amitabha Bhattacharjee

Introduction: Infections caused by Pseudomonas aeruginosa are difficult to treat as the majority of isolates exhibit varying degrees of beta-lactamase mediated resistance to most of the beta-lactam antibiotics. It is also not unusual to find a single isolate that expresses multiple β-lactamase enzymes, further complicating the treatment options. Thus the present study was designed to investigate the coexistence of different beta-lactamase enzymes in clinical isolates of P. aeruginosa. Methodology: A total of 202 clinical isolates of P. aeruginosa were tested for the presence of AmpC beta-lactamase, extended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) enzyme. Detection of AmpC beta-lactamase was performed by disk antagonism test and a modified three-dimensional method, whereas detection of ESBL was done by the combined disk diffusion method per Clinical and Laboratory Standards Institute (CLSI) guidelines and MBL were detected by the Imipenem EDTA disk potentiation test. Results: A total of 120 (59.4%) isolates were confirmed to be positive for AmpC beta-lactamase. Among them, 14 strains (7%) were inducible AmpC producers. Co-production of AmpC along with extended spectrum beta-lactamase and metallo beta-lactamase was reported in 3.3% and 46.6% isolates respectively. Conclusion: The study emphasizes the high prevalence of multidrug resistant P. aeruginosa producing beta-lactamase enzymes of diverse mechanisms. Thus proper antibiotic policy and measures to restrict the indiscriminative use of cephalosporins and carbapenems should be taken to minimize the emergence of this multiple beta-lactamase producing pathogens.


2021 ◽  
Vol 36 (1) ◽  
pp. 1-14
Author(s):  
A.Z. Nhidza ◽  
C. Gufe ◽  
J. Marumure ◽  
Z. Makuvara ◽  
T. Chisango ◽  
...  

The presence of Salmonella in food products and emergence of antibiotic resistance are the major challenges facing public health policies. A total of 2749 crocodile meat samples obtained from the Central Veterinary Laboratories in Zimbabwe were screened for Salmonella specieswere collected from three Zimbabwean commercial farms between the year 2012 and 2019 for a retrospective observational study to determine the prevalence and magnitude of antibiotics resistant Salmonella species in crocodile meat. The isolation of Salmonella was in accordance with the ISO 6579:2002 and the antibiotic susceptibility testing was carried out based on Clinical and Laboratory Standard Institute’s recommendations by means of the Kirby-Bauer disk diffusion method. SILAB Database was used to determine the prevalence of Salmonella species. Prevalence was stratified by year and farms. Twenty Salmonella isolates were identified using biochemical tests, and 15 were confirmed by polymerase chain reaction (PCR). Antimicrobial susceptibility profiles of the confirmed Salmonella isolates were examined using 14 antibiotics. The overall prevalence of Salmonella species in crocodile meat samples was 0.5%. The prevalence of Salmonella species ranged from 0.04% to 0.44% in the crocodile meat samples and annual prevalence ranged from 0.01% to 1%. The highest prevalence of Salmonella (4.4%) was recorded in the year 2012. Salmonella isolates from one of the three tested farms were resistant to Erythromycin (73.33%), Ampicillin (80%), and Penicillin G (100%). Generally, Salmonella isolates displayed lower resistance to Cefepime, Ceftriaxone, Amikacin, Tetracycline, Ertapenem, Florfenicol, and Erythromycin (0-53.33%) whereas all Salmonella isolates showed susceptibility to Cefepime, Ceftriaxone, Ertapenem, and Florfenicol. Although the study indicates low prevalence of Salmonella species in crocodile meat, there is a need for strict implementation of Hazard Analysis Critical Control Point (HACCP) to reduce contamination rates in meat and its products


Sign in / Sign up

Export Citation Format

Share Document