The value of primary tillage in the development of plant trees and shrubs

2015 ◽  
Vol 5 (2) ◽  
pp. 149-158

Are considered indicators that define the quality of soil preparation, and requirements for the degree of crumbling, fluff and lumpy soil layer during the outbreak, depending on soil moisture, rendering crucial. Research has shown that in the soil-ing have low permeability and low supply of humus, essential to increase the absorbency of creating a stock of moisture in the lower layers becomes deep tillage (60-70 cm) leaving the upper fertile layer, the degree of crumbling ko- torogo should be within at least 60 %.

2011 ◽  
Vol 110-116 ◽  
pp. 4914-4918 ◽  
Author(s):  
Yousef Abbaspour-Gilandeh ◽  
Zargham Fazel-Niari ◽  
Gholamhosein Shahgoli ◽  
Malek Bavafa

In many parts of the world, row crops are treated with herbicides. Because of environmental concerns, crop cultivation is suggested as an excellent method of weed control. The object of this study was to design and construct a high speed inter-row cultivator. The speed of plowing has a significant effect not only on the depth of plowing but on factors which affect the quality of soil preparation such as loosening of the upper soil layer, cutting roots of the previous crops, covering and plowing in of weeds, leveling the finished surface of the field, displacement of the son layer and so on. In this study, the designed and constructed cultivator has a toolbar, unit frame, disk coulter and a flat sweep. The unit frame is attached to a tractor mounted tool bar by a suspension linkage. The suspension linkage allows the unit frame to move up and down relative to a tool bar that the cultivator unit is attached to. The numerical analysis was performed with COSMOS/M 1.71 FEM software (Structural Research and Analysis Corporation, CA).


2020 ◽  
pp. 14-18
Author(s):  
D. S. Magomedova ◽  
S. A. Kurbanov ◽  
D. M. Ramazanov

Relevance. In the conditions of the dry-steppe zone of lowland Dagestan, the beneficial effect of drip irrigation in combination with dump cultivation on the yield and quality of sweet pepper fruits from Moldova proved. Results. It experimentally established that maintaining moisture in the active 0.5 m soil layer during the growing season within 80- 100% of LMC against the background of dump processing to a depth of 0.23-0.25 m led to an increase in yield and biochemical composition of sweet pepper fruits. Differences in the influence of dump and small (0.10-0.12 m) tillage on agrophysical and phytosanitary indicators of fertility of meadow medium loamy soil were revealed. The data showing the inappropriateness of using small-scale cultivation under conditions of irrigated vegetable growing, which leads to a deterioration in the agrophysical indicators of fertility: increase in soil density by 0.05-0.08 t/m3, decrease in the number of water-resistant units by 7,0%, water permeability reduction by 22.0% and water resistance coefficient by 12.9%, 2.1 times increase in planting weed and 212.6% potential soil weed. Of the three studied thresholds of soil moisture (70, 80 and 90% LMC), it was established that the best conditions for plant growth and development, optimization of their photosynthetic activity are created at a humidity threshold of 80% LMC, at which the most efficient use of irrigation water is noted. Drip irrigation with maintaining the pre-irrigation threshold for soil moisture not lower than 80% of against the background of dump processing leads to an increase in the number of fruits on 1 plant, an increase in the mass of 1 fruit, which contributed to an increase in yield to 62 t/ha.


SIGMA TEKNIKA ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 81
Author(s):  
Muhammad Irsyam

ABSTRAK           Faktor yang menentukan kegagalan pertumbuhan suatu tanaman hampir dipengaruhi oleh teknik atau cara penyiraman tanaman yang salah. Hal ini disebabkan oleh teknik penyiraman yang dilakukan secara manual sehingga tidak semua tanaman mendapatkan asupan air yang merata untuk menghidari tanaman menjadi layu. Faktor lain yang menyebabkan kegagalan pertumbuhan tanaman adalah kelembaban tanah.          Oleh karena itu, untuk mengurangi permasalahan tersebut dirancanglah “Sistem Otomasi Penyiraman Tanaman Berbasis Telegram”. Adapun sistem ini meliputi penyiraman tanaman secara otomatis berdasarkan kadar kelembaban tanah dengan sistem pemberitahuan atau notifikasi yang akan dikirimkan kepada petani dengan menggunakan aplikasi smart phone Telegram.          Sistem ini telah mampu mengontrol penyiraman sesuai dengan kondisi yang diinginkan. Dengan adanya sistem otomasi penyiraman tanaman berbasis telegram maka dapat meningkatkan efesiensi dan efektivitas petani sehingga kualitas tanaman dapat terjaga dengan baik.Kata kunci -- Penyiraman Tanaman, Penyiraman Secara Otomatis, Telegram.ABSTRACT                Factors that determine the failure of a plant's growth of almost are influenced by incorrect cropping techniques or methods. This is caused by the technique of watering is done manually so that not all plants get a uniform water intake to avoid crops withered. Another factor that causes plant growth failure is soil moisture.          Therefore, to reduce the problem was designed "Telegram Based Water Planting Automation System". The system includes automatic watering of plants based on moisture level of the soil with a notification or notification system that will be sent to farmers using Telegram smart phone applications.          This system has been able to control the watering according to the desired conditions. With the telegraph-based plant watering plant automation system can improve the efficiency and effectiveness of farmers so that the quality of the plant can be maintained properly. Keywords -- Watering Plants, Watering Automatically, Telegram.  


2017 ◽  
Vol 43 (4) ◽  
pp. 571
Author(s):  
Shu-Min ZHANG ◽  
Tang-Yuan NING ◽  
Zhen LIU ◽  
Bin WANG ◽  
Tao SUN ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 500
Author(s):  
Zong Zhao ◽  
Yong Liu ◽  
Hongyan Jia ◽  
Wensheng Sun ◽  
Angang Ming ◽  
...  

Objective: To investigate the impact of different slope directions on the quantity and quality of the soil seed bank and seedling germination process of Castanopsis hystrix plantations. Method: Fixed sample plots in forest stands of Castanopsis hystrix were established on different slope directions (sunny slope, semi-sunny slope, semi-shady slope, and shady slope). The characteristics of the forest stand were investigated, and per-wood scaling was carried out. The temporal dynamics of the seed rain and seed bank were quantified using seed rain collectors and by collecting soil samples from different depths. The quantity and quality of the seeds were determined, and the vigor of mature seeds was measured throughout the study. Results: (1) The diffusion of Castanopsis hystrix seed rain started in mid-September, reached its peak from late October to early November, and ended in mid-December. (2) The dissemination process, occurrence time, and composition of the seed rain varied between the different slope directions. The seed rain intensity on the semi-sunny slope was the highest (572.75 ± 9.50 grains∙m−2), followed by the sunny slope (515.60 ± 10.28 grains∙m−2), the semi-shady slope (382.13 ± 12.11 grains∙m−2), and finally the shady slope (208.00 ± 11.35 grains∙m−2). The seed rain on the sunny slope diffused earliest and lasted the longest, while the seed rain on the shady slope diffused latest and lasted the shortest time. Seed vigor and the proportion of mature seeds within the seed rain were greatest on the semi-sunny slope, followed by the sunny slope, semi-shady slope, and the shady slope. (3) From the end of the seed rain to August of the following year, the amount of total reserves of the soil seed banks was highest on the semi-sunny slope, followed by the sunny slope then the semi-shady slope, and it was the lowest on the shady slope. The amount of mature, immature, gnawed seeds and seed vigor of the soil seed bank in various slope directions showed a decreasing trend with time. The seeds of the seed bank in all slope directions were mainly distributed in the litter layer, followed by the 0–2 cm humus layer, and only a few seeds were present in the 2–5 cm soil layer. (4) The seedling density of Castanopsis hystrix differed significantly on the different slope directions. The semi-sunny slope had the most seedlings, followed by the sunny slope, semi-shady slope, and the shady slope. Conclusions: The environmental conditions of the semi-sunny slope were found to be most suitable for the seed germination and seedling growth of Castanopsis hystrix, and more conducive to the regeneration and restoration of its population.


2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.


2018 ◽  
Vol 10 (8) ◽  
pp. 1285 ◽  
Author(s):  
Reza Attarzadeh ◽  
Jalal Amini ◽  
Claudia Notarnicola ◽  
Felix Greifeneder

This paper presents an approach for retrieval of soil moisture content (SMC) by coupling single polarization C-band synthetic aperture radar (SAR) and optical data at the plot scale in vegetated areas. The study was carried out at five different sites with dominant vegetation cover located in Kenya. In the initial stage of the process, different features are extracted from single polarization mode (VV polarization) SAR and optical data. Subsequently, proper selection of the relevant features is conducted on the extracted features. An advanced state-of-the-art machine learning regression approach, the support vector regression (SVR) technique, is used to retrieve soil moisture. This paper takes a new look at soil moisture retrieval in vegetated areas considering the needs of practical applications. In this context, we tried to work at the object level instead of the pixel level. Accordingly, a group of pixels (an image object) represents the reality of the land cover at the plot scale. Three approaches, a pixel-based approach, an object-based approach, and a combination of pixel- and object-based approaches, were used to estimate soil moisture. The results show that the combined approach outperforms the other approaches in terms of estimation accuracy (4.94% and 0.89 compared to 6.41% and 0.62 in terms of root mean square error (RMSE) and R2), flexibility on retrieving the level of soil moisture, and better quality of visual representation of the SMC map.


2006 ◽  
Vol 10 (6) ◽  
pp. 829-847 ◽  
Author(s):  
S. Giertz ◽  
B. Diekkrüger ◽  
G. Steup

Abstract. The aim of the study was to test the applicability of a physically-based model to simulate the hydrological processes in a headwater catchment in Benin. Field investigations in the catchment have shown that lateral processes such as surface runoff and interflow are most important. Therefore, the 1-D SVAT-model SIMULAT was modified to a semi-distributed hillslope version (SIMULAT-H). Based on a good database, the model was evaluated in a multi-criteria validation using discharge, discharge components and soil moisture data. For the validation of discharge, good results were achieved for dry and wet years. The main differences were observable in the beginning of the rainy season. A comparison of the discharge components determined by hydro-chemical measurements with the simulation revealed that the model simulated the ratio of groundwater fluxes and fast runoff components correctly. For the validation of the discharge components of single events, larger differences were observable, which was partly caused by uncertainties in the precipitation data. The representation of the soil moisture dynamics by the model was good for the top soil layer. For deeper soil horizons, which are characterized by higher gravel content, the differences between simulated and measured soil moisture were larger. A good agreement of simulation results and field investigations was achieved for the runoff generation processes. Interflow is the predominant process on the upper and the middle slopes, while at the bottom of the hillslope groundwater recharge and – during the rainy season – saturated overland flow are important processes.


Sign in / Sign up

Export Citation Format

Share Document