scholarly journals PATHOGENETIC ASPECTS OF THE PHENOTYPE OF BRONCHIAL ASTHMA ASSOCIATED WITH OBESITY

2019 ◽  
Vol 1 (71) ◽  
pp. 112-119
Author(s):  
А. Уксуменко ◽  
A. Uksumenko ◽  
Марина Антонюк ◽  
Marina Antonyuk

Currently, in parallel with the increase in the prevalence of asthma, there is an increase in the number of obese patients. The results of numerous studies indicate that the asthma phenotype in combination with obesity has well-defined clinical features – a more severe course with frequent exacerbations and reduced control of the disease. The article considers the main pathogenetic mechanisms that determine the development of the asthma phenotype in combination with obesity. The influence of excess adipose tissue in the chest on respiratory mechanics, the correlation of gastroesophageal reflux disease and respiratory depression in sleep are described. It is shown that the phenotype of asthma with obesity is characterized by inflammation of adipose tissue, adipokine imbalance, insulin resistance, and disturbance of vitamin D metabolism. Gender peculiarities and genetic condition of asthma associated with obesity are considered. Understanding general mechanisms underlying the formation of asthma and obesity will undoubtedly contribute to the development of new therapeutic strategies.

2009 ◽  
Vol 68 (4) ◽  
pp. 378-384 ◽  
Author(s):  
Henrike Sell ◽  
Jürgen Eckel

A strong causal link between increased adipose tissue mass and insulin resistance in tissues such as liver and skeletal muscle exists in obesity-related disorders such as type 2 diabetes. Increased adipose tissue mass in obese patients and patients with diabetes is associated with altered secretion of adipokines, which also includes chemotactic proteins. Adipose tissue releases a wide range of chemotactic proteins including many chemokines and chemerin, which are interesting targets for adipose tissue biology and for biomedical research in obesity and obesity-related diseases. This class of adipokines may be directly linked to a chronic state of low-grade inflammation and macrophage infiltration in adipose tissue, a concept intensively studied in adipose tissue biology in recent years. The inflammatory state of adipose tissue in obese patients may be the most important factor linking increased adipose tissue mass to insulin resistance. Furthermore, chemoattractant adipokines may play an important role in this situation, as many of these proteins possess biological activity beyond the recruitment of immune cells including effects on adipogenesis and glucose homeostasis in insulin-sensitive tissues. The present review provides a summary of experimental evidence of the role of adipose tissue-derived chemotactic cytokines and their function in insulin resistancein vivoandin vitro.


Endocrinology ◽  
2007 ◽  
Vol 149 (3) ◽  
pp. 1350-1357 ◽  
Author(s):  
Florian W. Kiefer ◽  
Maximilian Zeyda ◽  
Jelena Todoric ◽  
Joakim Huber ◽  
René Geyeregger ◽  
...  

Obesity is associated with a chronic low-grade inflammation characterized by macrophage infiltration of adipose tissue (AT) that may underlie the development of insulin resistance and type 2 diabetes. Osteopontin (OPN) is a multifunctional protein involved in various inflammatory processes, cell migration, and tissue remodeling. Because these processes occur in the AT of obese patients, we studied in detail the regulation of OPN expression in human and murine obesity. The study included 20 morbidly obese patients and 20 age- and sex-matched control subjects, as well as two models (diet-induced and genetic) of murine obesity. In high-fat diet-induced and genetically obese mice, OPN expression was drastically up-regulated in AT (40 and 80-fold, respectively) but remained largely unaltered in liver (<2-fold). Moreover, OPN plasma concentrations remained unchanged in both murine models of obesity, suggesting a particular local but not systemic importance for OPN. OPN expression was strongly elevated also in the AT of obese patients compared with lean subjects in both omental and sc AT. In addition, we detected three OPN isoforms to be expressed in human AT and, strikingly, an obesity induced alteration of the OPN isoform expression pattern. Analysis of AT cellular fractions revealed that OPN is exceptionally highly expressed in AT macrophages in humans and mice. Moreover, OPN expression in AT macrophages was strongly up-regulated by obesity. In conclusion, our data point toward a specific local role of OPN in obese AT. Therefore, OPN could be a critical regulator in obesity induced AT inflammation and insulin resistance.


2020 ◽  
Vol 98 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Mihaela Ionica ◽  
Oana M. Aburel ◽  
Adrian Vaduva ◽  
Alexandra Petrus ◽  
Sonia Rațiu ◽  
...  

Obesity is an age-independent, lifestyle-triggered, pandemic disease associated with both endothelial and visceral adipose tissue (VAT) dysfunction leading to cardiometabolic complications mediated via increased oxidative stress and persistent chronic inflammation. The purpose of the present study was to assess the oxidative stress in VAT and vascular samples and the effect of in vitro administration of vitamin D. VAT and mesenteric artery branches were harvested during abdominal surgery performed on patients referred for general surgery (n = 30) that were randomized into two subgroups: nonobese and obese. Serum levels of C-reactive protein (CRP) and vitamin D were measured. Tissue samples were treated or not with the active form of vitamin D: 1,25(OH)2D3 (100 nmol/L, 12 h). The main findings are that in obese patients, (i) a low vitamin D status was associated with increased inflammatory markers and reactive oxygen species generation in VAT and vascular samples and (ii) in vitro incubation with vitamin D alleviated oxidative stress in VAT and vascular preparations and also improved the vascular function. We report here that the serum level of vitamin D is inversely correlated with the magnitude of oxidative stress in the adipose tissue. Ex vivo treatment with active vitamin D mitigated obesity-related oxidative stress.


2020 ◽  
Vol 21 (14) ◽  
pp. 4860 ◽  
Author(s):  
Michele Mannelli ◽  
Tania Gamberi ◽  
Francesca Magherini ◽  
Tania Fiaschi

Cachexia is a devastating pathology induced by several kinds of diseases, including cancer. The hallmark of cancer cachexia is an extended weight loss mainly due to skeletal muscle wasting and fat storage depletion from adipose tissue. The latter exerts key functions for the health of the whole organism, also through the secretion of several adipokines. These hormones induce a plethora of effects in target tissues, ranging from metabolic to differentiating ones. Conversely, the decrease of the circulating level of several adipokines positively correlates with insulin resistance, metabolic syndrome, diabetes, and cardiovascular disease. A lot of findings suggest that cancer cachexia is associated with changed secretion of adipokines by adipose tissue. In agreement, cachectic patients show often altered circulating levels of adipokines. This review reported the findings of adipokines (leptin, adiponectin, resistin, apelin, and visfatin) in cancer cachexia, highlighting that to study in-depth the involvement of these hormones in this pathology could lead to the development of new therapeutic strategies.


2014 ◽  
pp. 95-101
Author(s):  
L. MÁČOVÁ ◽  
M. BIČÍKOVÁ ◽  
H. ZAMRAZILOVÁ ◽  
M. HILL ◽  
H. KAZIHNITKOVÁ ◽  
...  

Elevated levels of glucocorticoids lead to the development of obesity and metabolic syndrome. Local glucocorticoid levels are regulated through the enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD 1), an enzyme that regenerates active cortisol from inert cortisone. Increased expression of 11β-HSD 1 in adipose tissue promotes higher body mass index (BMI), insulin resistance, hypertension, and dyslipidemia. Human 11β-HSD 1 is also responsible for inter-conversion of 7-hydroxylate metabolites of dehydroepiandrosterone (7-OH-DHEA) to their 7-oxo-form. To better understanding the mechanism of the action, we focused on 7-OH- and 7-oxo-DHEA, and their circulating levels during the reductive treatment in adolescent obese patients. We determined plasma levels of 7α-OH-DHEA, 7β-OH-DHEA, and 7-oxo-DHEA in 55 adolescent patients aged 13.04-15.67 years, BMI greater than 90th percentile. Samples were collected before and after one month of reductive therapy. Circulating levels of 7α-OH-DHEA decreased during the reductive therapy from 1.727 (1.614; 1.854, transformed mean with 95 % confidence interval) to 1.530 nmol/l (1.435; 1.637, p<0.05) in girls and from 1.704 (1.583; 1.842) to 1.540 nmol/l (1.435; 1.659, p<0.05) in boys. With regard to the level of 7-oxo-DHEA, a significant reduction from 1.132 (1.044; 1.231) to 0.918 nmol/l (0.844; 1.000, p<0.05) was found after the treatment, but only in boys. No significant difference in 7β-OH-DHEA levels was observed. In conclusions, diminished levels of 7α-OH-DHEA indicate its possible effect on activity of 11β-HSD 1. Further studies are necessary to clarify whether competitive substrates for 11β-HSD 1 such as 7α-OH-DHEA could inhibit production of glucocorticoids and may be involved in metabolic processes leading to reduction of obesity.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Haya Ali Alsulaiti ◽  
Michael Harvey ◽  
Aishah A. Latiff ◽  
Mohamed A. Elrayess

2013 ◽  
Vol 0 (4(45)) ◽  
pp. 22-26
Author(s):  
О. С. Ларін ◽  
М. Л. Кирилюк ◽  
О. Е. Третяк ◽  
М. С. Черенько ◽  
Л. В. Щекатурова ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1977 ◽  
Author(s):  
Laurianne Bonnet ◽  
Marielle Margier ◽  
Ljubica Svilar ◽  
Charlene Couturier ◽  
Emmanuelle Reboul ◽  
...  

Vitamin D metabolism is actively modulated in adipose tissue during obesity. To better investigate this process, we develop a specific LC-HRMS/MS method that can simultaneously quantify three vitamin D metabolites, i.e., cholecalciferol, 25-hydroxyvitamin D3 (25(OH)D3), and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in a complex matrix, such as mouse adipose tissue and plasma. The method uses pretreatment with liquid–liquid or solid–phase extraction followed by derivatization using Amplifex® reagents to improve metabolite stability and ionization efficiency. Here, the method is optimized by co-eluting stable isotope-labelled internal standards to calibrate each analogue and to spike biological samples. Intra-day and inter-day relative standard deviations were 0.8–6.0% and 2.0–14.4%, respectively for the three derivatized metabolites. The limits of quantification (LoQ) achieved with Amplifex® derivatization were 0.02 ng/mL, 0.19 ng/mL, and 0.78 ng/mL for 1,25(OH)2D3, 25(OH)D3 and cholecalciferol, respectively. Now, for the first time, 1,25(OH)2D3 can be co-quantified with cholecalciferol and 25(OH)D3 in mouse adipose tissue. This validated method is successfully applied to study the impact of obesity on vitamin D status in mice.


Sign in / Sign up

Export Citation Format

Share Document