scholarly journals Analysis of Fire and Explosion Properties of LNG

2021 ◽  
Vol 58 (2) ◽  
pp. 58-73
Author(s):  
Marzena Półka ◽  
Robert Piec ◽  
Dariusz Olcen

Aim: The aim of this article is to analyse fire and explosion properties of LNG along with the identification of hazards that may arise during emergency incidents involving it. The article is based on an analysis of the available literature and a full-scale experimental study involving a 200-liter LNG tank leading to a jet fire. Introduction: Safe use and proper transport of flammable and harmful substances, together with the analysis of the effects of threats, enable the reduction of the number of accidents and provide possible conditions for the evacuation of people and property in a hazard zone. The compilation and systematization of knowledge on the safe use of the environmentally friendly LNG fuel will allow for an increase in the scope of its use. It is consistent with the state’s sustainable development policy consisting in identifying threats or adjusting technical solutions that minimize losses in transport or industry. Methodology: There are many legal acts in the world regarding safe storage and transport of LNG. One of the most important is Directive 2012/18/EC known as “Seveso III”. This document contains requirements for the prevention of major accidents involving hazardous substances – including LNG – and ways to reduce their negative effects on human health and the environment. Relevant requirements have also been specified in standards, tests, articles and other international acts, including in the European agreement on the international carriage of dangerous goods by road (the so-called ADR Agreement). The article compares flammable and explosive parameters of LNG. Possible scenarios occurring during the release and ignition of the LNG vapour cloud have been shown. The change of pressure of LNG vapour in the 200 l tank as a function of its heating time in the burning spill of a mixture of gasoline and diesel fuel is presented. In such a thermal exposure, a jet fire with a flame length of up to 5 meters was obtained. Conclusions: The proper use of flammable gases should be a priority in ensuring fire and explosion safety in facilities, during transport, etc. Hence, recognizing the threats and comparing them, or matching technical solutions that minimize the effects of LNG failures will allow active inclusion of knowledge in this field in the process of protection against fire and explosion. In case of LNG storage, attention should be paid to the types of materials in the immediate vicinity of this liquefied gas in order to have sufficient mechanical properties at the lowest liquefied gas temperature. Keywords: LNG, fire safety, process safety Article type: review article

Author(s):  
Ilai Sher

Liquid breakup mechanism utilization is prevalent in numerous applications. One of the most common uses of this phenomenon is in fuel injection systems. Liquid fuel is injected into an ambient air, to prepare a combustible mixture. Generally, evenly spread tiny fuel droplets are desirable. This is usually achieved through multiple liquid breaking mechanisms: Primary breakup of liquid jet, Secondary breakup of travelling liquid droplets, and Secondary breakup of wall-impinging liquid droplets. Indeed, many studies are devoted to the modelling of those phenomena. However, the absolute majority of those studies are limitedly focused on the isothermal case, where liquid is assumed to be of ambient gas’ temperature. Conversely, practical conditions, under which rather cold fuel is normally injected into hot ambient air, suggest the real case to be non-isothermal. Moreover, the non-isothermal nature of that process seems to have its effect at the most relevant to breakup regions, i.e. the breaking interfacial surfaces. It is shown that as these surfaces can be in instant contact with a hot ambient, breakup can be greatly altered by the extent of this sudden thermal exposure, through its mostly transient and even spatial effect on physical properties of breaking interfaces. This is shown to be of significant effect on all breakup mechanisms: primary and secondary. New models are suggested for these non-isothermal phenomena, which combine transient heat-transfer with inter-phase hydrodynamic breakup, through physical properties’ dependency on temperature. Results are discussed in terms of effect on spray breakup products, and a careful comparison with the trend of a limited number of so-far available experimental results is presented.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1666
Author(s):  
Zhu Liu ◽  
Zi Yu ◽  
Xuefeng She ◽  
Huiqing Tang ◽  
Qingguo Xue

One approach to reduce CO2 emission in the steelmaking industry is to recycle scrap to the blast furnace/basic oxygen furnace (BF/BOF) production system. This paper performed a numerical investigation on the BF operation with scrap charging. The investigated BF was with an inner volume of 820 m3, producing 2950 tons of hot metal per day (tHM/d). The simulated results indicated the following: Extra scrap addition in BF causes the decrease of shaft temperature, the decrease of local gas utilization, and the lowering of cohesive zone position, leading to an unstable BF running. The partial replacement of sinter with scrap in BF can mitigate the negative effects induced by scrap charging. The optimal scrap rate in the BF is 178 kg/tHM, under which the BF reaches a productivity of 3310 tHM/d, a top-gas utilization of 48.5%, and a top-gas temperature of 445 K. Compared to the base case, in the BF operation with scrap charging, the BF productivity is increased by 360 kg/tHM, its pulverized-coal rate and coke rate are decreased by 16.3 kg/tHM and 39.8 kg/tHM, respectively.


2020 ◽  
Vol 98 (7) ◽  
Author(s):  
Maryane S F Oliveira ◽  
Markus K Wiltafsky-Martin ◽  
Hans H Stein

Abstract Two experiments were conducted to test the hypothesis that both the degree of heating and the time that heat is applied will affect the concentration of DE and ME, and the apparent ileal digestibility (AID) and the standardized ileal digestibility (SID) of amino acids (AA) in 00-rapeseed meal (00-RSM) fed to growing pigs. The nine treatments were prepared using a conventional 00-RSM that was either not autoclaved or autoclaved at 110 °C for 15 or 30 min or at 150 °C for 3, 6, 9, 12, 15, or 18 min. In experiment 1, 20 growing barrows with an average initial BW of 21.2 ± 1.2 kg were randomly allotted to the 10 diets in a replicated 10 × 4 Youden square with 10 diets and four periods in each square. A corn-based basal diet and nine diets containing corn and each source of 00-RSM were formulated. Urine and fecal samples were collected for 5 d after 7 d of adaptation. In experiment 2, nine diets contained one of the nine sources of 00-RSM as the sole source of AA, and an N-free diet that was used to measure basal endogenous losses of AA and CP was formulated. Twenty growing barrows with an initial BW of 69.8 ± 5.7 kg had a T-cannula installed in the distal ileum and were allotted to a 10 × 7 Youden square design with 10 diets and 7 periods. Ileal digesta were collected on days 6 and 7 of each 7-d period. Results from the experiments indicated that there were no effects of autoclaving at 110 °C on DE and ME or on AID and SID of AA in 00-RSM, but DE and ME, and AID and SID of AA were less (P < 0.01) if 00-RSM was autoclaved at 150 °C compared with 110 °C. At 150 °C, there were decreases (quadratic, P < 0.05) in DE and ME, and in AID and SID of AA as heating time increased. In conclusion, autoclaving at 110 °C did not affect ME or SID of AA in 00-RSM, but autoclaving at 150 °C had negative effects on ME and SID of AA and the negative effects increased as heating time increased.


2011 ◽  
Vol 82 ◽  
pp. 362-367 ◽  
Author(s):  
Alexandra Byström ◽  
Ulf Wickström ◽  
Milan Veljkovic

The concept of Adiabatic Surface Temperature (AST) opens possibilities to calculate heat transfer to a solid surface based on one temperature instead of two as is needed when heat transfer by both radiation and convection must be considered. The Adiabatic Surface Temperature is defined as the temperature of a surface which cannot absorb or lose heat to the environment, i.e. a perfect insulator. Accordingly, the AST is a weighted mean temperature of the radiation temperature and the gas temperature depending on the heat transfer coefficients. A determining factor for introducing the concept of AST is that it can be measured with a cheap and robust method called the plate thermometer (PT), even under harsh fire conditions. Alternative methods for measuring thermal exposure under similar conditions involve water cooled heat flux meters that are in most realistic situations difficult to use and very costly and impractical. This paper presents examples concerning how the concept of AST can be used in practice both in reaction-to-fire tests and in large scale scenarios where structures are exposed to high and inhomogeneous temperature conditions.


2021 ◽  
Vol 263 ◽  
pp. 02009
Author(s):  
Evgeny Gvozdev

The object of the scientific research is buildings (structures), which requiring the determination of a reliability indicator for their further operation in new operating conditions, the determination of additional loads in the form of (explosions, fires, vibration processes). The solution to such problems is relevant for buildings (structures), which are acquired (leased) by the owner, for their further operation in the new conditions of the technological process associated with the handling, storage, processing and production of fire and explosion hazardous substances (materials). It is important to determine the readiness of buildings (structures) for operation in the new conditions of functioning of the technological process of production, it is proposed to use deterministic, statistical and probabilistic approaches. It is proposed to use a simplified assessment of the safety margin of a building (structure) by yield strengths (for steel elements) and strength (for base materials, load-bearing walls, partitions and ceilings) corresponding to the maximum allowable values for their destruction. The innovative approach is described that allows us to solve the problems of assessing the strength reliability of structural elements of buildings (structures) to obtain guaranteed characteristics of a given margin of safety, its resistance to possible realized effects (explosions, fires, vibration processes)


2020 ◽  
Vol 3 ◽  
pp. 54-61
Author(s):  
T. KORSHUNOVA ◽  
◽  
G. POTEMKIN ◽  
A. DOROFEEV ◽  
V. DROZHZHIN ◽  
...  

2018 ◽  
Vol 45 ◽  
pp. 00091
Author(s):  
Ewa Suchanek-Gabzdyl ◽  
Maciej Mrowiec

The increasing urbanization process in Europe has resulted in an increase in the proportion of impervious areas in the development of watersheds. This fact, combined with the more frequent occurrence of volatile rainfall, contributes to the formation of high intensity surface runoff, which results in local flooding of the lowest located areas. Water runoff also causes a large amount of pollution from the catchment to be flushed away and transported to the receiver, which generates many negative effects on the environment. Due to these unfavorable changes in the urban catchment, it is necessary to manage the waters in accordance with the principles of sustainable development. One of the basic tools to protect the quantity and quality of water discharged from the catchment area is to take into account the need to implement technical solutions to increase the retention of rainwater in cities. Such solutions, consisting of designing natural rainwater management systems, could work independently or in cooperation with traditional rainwater drainage systems [1].


2019 ◽  
pp. 089270571986686 ◽  
Author(s):  
Yue Zhang ◽  
Jun Fang ◽  
Jingwu Wang ◽  
Luyao Zhao ◽  
Yongming Zhang

Thermal aging affects polymer ignition and flame spread process by changing the polymer kinetic parameters. Polyethylene (PE) with 0.15 mm thickness insulated by copper core of 0.5 mm diameter was used in this experiment. The PE was preheated under different temperature and heating time. Wires which have experienced thermal aging at 130°C for 30 and 200 h display higher crystallinity and pyrolysis temperature. However, the crystallinity and pyrolysis temperature decrease of wires, which experienced thermal aging at 150°C for 30 and 200 h by the results of thermogravimetric analysis and differential scanning calorimetry tests. The ignition experiment results highlight the ignition delay exhibiting “U” type with pressure. Chemical kinetics controls the ignition delay in lower pressure region, and the heat transfer controls the ignition delay in higher pressure region. The region controlled by chemical kinetics is larger for the wire with higher crystallinity and pyrolysis temperature. The flame spread experiment results show that the flame area relays more on flame length for the wires with lower crystallinity and pyrolysis temperatures, while wires with greater crystallinity and higher pyrolysis temperature depend more on flame height.


2020 ◽  
Vol 18 (4) ◽  
pp. 73-94
Author(s):  
Kamil Mroczka ◽  

In recent months, the COVID-19 virus has become a key challenge for all countries, regardless of their geographical location, economic situation or system of government. As stated by Grzegorz Rydlewski, the crisis has become a condition for balancing and targeting the activities of supranational structures, states, various intermediate structures, and individual people (Rydlewski, 2020). The main aim of the present article is to discuss the trends and changes to public decision-making processes introduced by the lawmaker in connection with the epidemic threat to local government administration. Unquestionably, one of the negative effects of the pandemic is the fact that holding meetings of local government bodies in physical form has been unsafe since the outbreak. Legal and technical solutions have been introduced which partly transfer the decision-making process to the digital world by allowing remote meetings for a wide range of statutory bodies. In this context, it is important to examine the usefulness, practicality and efficiency of the solutions adopted, and also to identify key obstacles and challenges to local government decision-making processes. Additionally, examples of ICT tools supporting decision making in local government units will be duly provided. Finally, key problems identified in the course of the analysis in question, e.g., issues related to the area of cyber security, will be also highlighted.


Sign in / Sign up

Export Citation Format

Share Document