scholarly journals Signal processing of C-RTD Sensor output as the input to the instrument of low temperature monitoring using Arduino Uno Rev.3

2019 ◽  
Vol 1 (2) ◽  
pp. 48
Author(s):  
Rismawan Rismawan ◽  
Moh. Toifur

The C-RTD (Coil-Resistance Temperature Detector) output signal is an analog signal in the form of a direct voltage. This value changes with changes in RTD temperature. This analog signal can be read by users using a multimeter or similar device but does not directly indicate the RTD temperature. In order to obtain RTD temperature values, an additional device is required. In order to have a useful value and practicality, a device that can convert analog signals into values can be read directly by the user. The microcontroller was chosen as a used device. The selected microcontroller system is Arduino Uno because has been coupled with input and output ports so users only need to enter programs related to the system being created. In the other hand Arduino Uno by considering the low cost and practical. For the measurement system, the RTD output signal must be conditioned into a digital signal using the ADC so that it can be processed by the microcontroller. From testing instrument obtained that the system has been able to convert analog RTD signals into digital signals. The range of measurement is -176°C to  0°C with an accuracy of ± 0.20 / mV. 

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
A. Arifin ◽  
Nelly Agustina ◽  
Syamsir Dewang ◽  
Irfan Idris ◽  
Dahlang Tahir

This research discusses the polymer optical fiber sensor for respiratory measurements. The infrared LED that produces light will propagate along the polymer optical fiber which will be received by the phototransistor and the differential amplifier. The output voltage in the form of an analog signal will be converted to a digital signal by the Arduino Uno microcontroller and displayed on the computer. The polymer optical fiber sensor is installed on the corset using a variety of configuration (straight, sinusoidal, and spiral), placed in the abdomen, and a variety of positions (abdomen, chest, and back) using only a spiral configuration. While doing the inspiration, the stomach will be enlarged so that the optical fiber sensor will have strain. The strain will cause loss of power, the resulting light intensities received by the phototransistor are reduced, and the output voltage on the computer decreases. The result shows that the highest voltage amplitudes were in the spiral configuration placed in the abdominal position for slow respiration measurements with the highest range, sensitivity, and resolution which are 0.119 V, 0.238 V/s, and 0.004 s, respectively. The advantages of our work are emphasized on measurement system simplicity, low cost, easy fabrication, and handy operation and can be connected with the Arduino Uno microcontroller and computer.


2021 ◽  
Vol 7 (2) ◽  
pp. 144-160
Author(s):  
Aulia Eka Putra ◽  
Kiki Prawiroredjo ◽  
Henry Candra ◽  
Engelin Shintadewi Julian ◽  
Gunawan Tjahjadi

Penyakit jantung masih menjadi ancaman di Indonesia, menurut Kementerian Kesehatan, pada tahun 2014 penyakit jantung koroner (PJK) merupakan penyebab kematian tertinggi setelah stroke. Persentase terbesar penyakit kardiovaskuler adalah pada gangguan irama jantung. Instrumentasi medik elektrokardiograf (EKG) digunakan untuk mendeteksi sinyal biopotensial yang dihasilkan jantung sehingga dapat didiagnosis oleh dokter spesialis jantung. Penelitian ini mengusulkan sebuah prototipe sistem rekam jantung EKG yang ekonomis, dengan memanfaatkan suatu program aplikasi menggunakan bahasa pemrograman C Sharp. Sistem menggunakan 3 buah surface electrodes, modul AD8232, dan modul Arduino Uno sebagai komponen pembentuk instrument elektrokardiograf. Surface electrodes berfungsi menangkap sinyal aktivitas listrik pada jantung yang dikondisikan oleh modul AD8232 dan diubah menjadi sinyal digital pada  Arduino.  Tampilan pada layar komputer memperlihatkan jumlah denyut jantung per menit (BPM) dan grafik gelombang EKG yang dapat dibaca nilai amplitudo dan lebar waktu gelombangnya. Berdasarkan hasil perbandingan pengujian antara prototype EKG terhadap Portable Easy ECG Monitor PC-08B didapati kesalahan rata-rata parameter gelombang jantung yaitu pada denyut jantung per menit 1,19%, pada interval R-R 2.44%, pada interval P-R 2,05 %, pada interval Q-T 1,16 %, pada interval waktu gelombang P 2,58 %, pada interval waktu gelombang QRS 2,07 %, pada interval waktu gelombang T 3,26 %, pada nilai amplitudo QRS 3,40 %, pada nilai amplitudo gelombang P  4 %, dan pada nilai amplitudo gelombang T 4,10 %. Heart disease was a threat in Indonesia, according to the Ministry of Health in 2014 coronary heart disease (CHD) was the highest cause of death after stroke. The largest percentage of cardiovascular disease was in heart rhythm disorders. Electrocardiograph (ECG) was used to detect biopotential signals generated by the heart. This research proposed a low cost electrocardiograph (ECG) prototype by utilizing an application using C Sharp. The system consisted of three surface electrodes, an AD8232 module, and an Arduino Uno module. Surface electrodes detected the electrical activity signal from the heart that was conditioned using AD8232 module and converted to digital signal in Arduino Uno. The bit per minute (BPM) of the heart and the ECG graph are displayed on the laptop screen with graticule to measure the amplitude and the width of the wave. Based on the test results of the ECG prototype compare to the Portable Easy ECG Monitor PC-08B, it is found that the average error of heartbeat per minute  is 1.19 %, the R-R time interval is 2.44 %, the P-R time interval is 2.05 %, the Q-T time interval is 1.16 %, the P wave time interval is 2.58 %, the QRS time interval is 2.07 %,  T wave time interval is 3.26 %, the QRS amplitude is 3.40 %, the P amplitude is 4 %, and the T amplitude is 4.10 %.


2018 ◽  
Vol 3 (1) ◽  
pp. 71-80
Author(s):  
Moch. Ilyas ◽  
Yuyun Suprapto ◽  
Totok Warsito ◽  
Romma Diana P.

The design of data transmission is made with the intention of later as media data delivery AFTN at low cost, utilizing the network provider using the GSM GATEWAY will get a solution to the problem of how to transmit data AFTN when an aerodrome does not have the means of VSAT and the airport does not have a network AFTN. The working principle of this circuit is to change the output signal DB9 serial port on the teleprinter news format ITA2 (5n1) is converted to the module MAX3232 to be transformed into TTL voltage level, which is a TTL input data that can be processed by a microcontroller Arduino Mega 2560. Output of Arduino Mega was converted back to the module MAX3232 from TTL to Serial, then the data is then converted digital signal into an analog signal by using Wavecom M1306B Modem Serial Q2406B. This analog signal is then sent to the destination. Once the information from the transmitter wavecom analog signal received by the receiver with wavecom modem, the signal is converted back by module MAX3232 Serial to TTL which will be connected to the Arduino Uno microcontroller and connected with a PC software in which there are accepted as news ticker


2019 ◽  
Vol 4 (12) ◽  
pp. 149-154
Author(s):  
Victor Sorochi Uko ◽  
Gachada Benard Dubukumah ◽  
Ibrahim Kafayat Ayosubomi

For the purpose of an effective communication, speech becomes a convenient conduit to convey messages as an important activity in human life. The need for better reception of voice messages between humans and the environment they interact with becomes a trend and an area of interest that needs to be studied for improvements. A speech to text translation system is an embedded based design that convert analogue signals particularly voice from an input into digital signals that a computer or any electronic device can understand and perform a required task or display the equivalent digital signal in text on a screen. Speech translation systems mitigates the bottlenecks to an efficient communication caused by other varieties of communication methods. Even though speech translation and recognition designs haven’t been well explored for electronic integration due to complexity and variation of sound signals from sources, this low cost, simple and portable project was incorporated to serve as a substratum and alternative in speech to text translation designs using microcontroller, in other to bridge the gaps in the world of human communications. This research paper addresses design methodology, limitations, recommendations and applications of the implemented speech to text translation system for improved communication reception.


2016 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Potnuru Devendra ◽  
Mary K. Alice ◽  
Ch. Sai Babu ◽  
◽  
◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1697
Author(s):  
Xicong Li ◽  
Zabih Ghassemlooy ◽  
Stanislav Zvánovec ◽  
Paul Anthony Haigh

With advances in solid-state lighting, visible light communication (VLC) has emerged as a promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure by adding data communication capabilities to the illumination functionality. The last decade has witnessed the evolution of the VLC concept through global standardisation and product launches. Deploying VLC systems typically requires replacing existing light sources with new luminaires that are equipped with data communication functionality. To save the investment, it is clearly desirable to make the most of the existing illumination systems. This paper investigates the feasibility of adding data communication functionality to the existing lighting infrastructure. We do this by designing an experimental system in an indoor environment based on an off-the-shelf LED panel typically used in office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase (CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to the residual ripple of the bias current that is generated by the panel’s driver. Flicker is introduced by the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than several kilohertz). This significantly reduces the transmitter’s modulation depth. Concurrently, the driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.


2008 ◽  
Vol 17 (03) ◽  
pp. 315-328 ◽  
Author(s):  
TANAY CHATTOPADHYAY ◽  
GOUTAM KUMAR MAITY ◽  
JITENDRA NATH ROY

Nonlinear optics has been of increased interest for all-optical signal, data and image processing in high speed photonic networks. The application of multi-valued (nonbinary) digital signals can provide considerable relief in transmission, storage and processing of a large amount of information in digital signal processing. Here, we propose the design of an all-optical system for some basic tri-state logic operations (trinary OR, trinary AND, trinary XOR, Inverter, Truth detector, False detector) which exploits the polarization properties of light. Nonlinear material based optical switch can play an important role. Tri-state logic can play a significant role towards carry and borrow free arithmetic operations. The principles and possibilities of the design of nonlinear material based tri-state logic circuits are proposed and described.


2014 ◽  
Vol 989-994 ◽  
pp. 3851-3855
Author(s):  
Guang Jin Lai

Digital X-ray photography technology is under the control of the computer, to use one-dimensional or 2D X-ray detector to convert the captured image into digital signals directly to using image processing technology. It can realize the function of image analysis. We introduce X-ray photography technology into the terminal identification in track and field, and use the clustering algorithm to improve computer image clustering algorithm. Through capturing the digital signal of human head, arms and legs, it enhances the terminal recognition method in track and field. Finally we use MATLAB to calculate the captured image value of X-ray photography. Through calculation, motion capture and recognition of X-ray image are enhanced obviously. It provides a theoretical basis for researching on motion capture technology in track and field.


2015 ◽  
Vol 785 ◽  
pp. 106-110
Author(s):  
M.N.M. Hussain ◽  
Ahmad Maliki Omar ◽  
Intan Rahayu Ibrahim ◽  
Kamarulazhar Daud

An identification system of multiple-input single-output (MISO) model is developed in controlling dsPIC microcontroller of positive output buck-boost (POBB) converters for module mismatch condition of photovoltaic (PV) system. In particular, the possibility of the scheme is to resolve the mismatch losses from the PV module either during shading or mismatch module occurrences. The MPPT algorithm is simplified by identification approach of indirect incorporated with a simple incremental direct method to form a combined direct and indirect (CoDId) algorithms. Irregular consumption of solar irradiation on a PV module shall step-up or step down the voltage regarding to the desired DC output voltage of POBB converter. This optimized algorithm will ensure that the PV module to kept at maximum power point (MPP), preventing power loss during module mismatch incident in PV module especially during partial shading condition. The simulation and laboratory results for PV module of polycrystalline Mitsubishi PV-AE125MF5N indicate that the proposed model and development of PV system architecture performs well, while the efficiency up to 97.7% at critical of low solar irradiance level. The controlling signal is based on low-cost embedded microcontroller of dsPIC30F Digital Signal Control (DSC).


Sign in / Sign up

Export Citation Format

Share Document