scholarly journals Rancangan Interface Komunikasi Data Aeronautical Fixed Telecomunication Network Menggunakan GSM Gateway Berbasis Arduino

2018 ◽  
Vol 3 (1) ◽  
pp. 71-80
Author(s):  
Moch. Ilyas ◽  
Yuyun Suprapto ◽  
Totok Warsito ◽  
Romma Diana P.

The design of data transmission is made with the intention of later as media data delivery AFTN at low cost, utilizing the network provider using the GSM GATEWAY will get a solution to the problem of how to transmit data AFTN when an aerodrome does not have the means of VSAT and the airport does not have a network AFTN. The working principle of this circuit is to change the output signal DB9 serial port on the teleprinter news format ITA2 (5n1) is converted to the module MAX3232 to be transformed into TTL voltage level, which is a TTL input data that can be processed by a microcontroller Arduino Mega 2560. Output of Arduino Mega was converted back to the module MAX3232 from TTL to Serial, then the data is then converted digital signal into an analog signal by using Wavecom M1306B Modem Serial Q2406B. This analog signal is then sent to the destination. Once the information from the transmitter wavecom analog signal received by the receiver with wavecom modem, the signal is converted back by module MAX3232 Serial to TTL which will be connected to the Arduino Uno microcontroller and connected with a PC software in which there are accepted as news ticker

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
A. Arifin ◽  
Nelly Agustina ◽  
Syamsir Dewang ◽  
Irfan Idris ◽  
Dahlang Tahir

This research discusses the polymer optical fiber sensor for respiratory measurements. The infrared LED that produces light will propagate along the polymer optical fiber which will be received by the phototransistor and the differential amplifier. The output voltage in the form of an analog signal will be converted to a digital signal by the Arduino Uno microcontroller and displayed on the computer. The polymer optical fiber sensor is installed on the corset using a variety of configuration (straight, sinusoidal, and spiral), placed in the abdomen, and a variety of positions (abdomen, chest, and back) using only a spiral configuration. While doing the inspiration, the stomach will be enlarged so that the optical fiber sensor will have strain. The strain will cause loss of power, the resulting light intensities received by the phototransistor are reduced, and the output voltage on the computer decreases. The result shows that the highest voltage amplitudes were in the spiral configuration placed in the abdominal position for slow respiration measurements with the highest range, sensitivity, and resolution which are 0.119 V, 0.238 V/s, and 0.004 s, respectively. The advantages of our work are emphasized on measurement system simplicity, low cost, easy fabrication, and handy operation and can be connected with the Arduino Uno microcontroller and computer.


2019 ◽  
Vol 1 (2) ◽  
pp. 48
Author(s):  
Rismawan Rismawan ◽  
Moh. Toifur

The C-RTD (Coil-Resistance Temperature Detector) output signal is an analog signal in the form of a direct voltage. This value changes with changes in RTD temperature. This analog signal can be read by users using a multimeter or similar device but does not directly indicate the RTD temperature. In order to obtain RTD temperature values, an additional device is required. In order to have a useful value and practicality, a device that can convert analog signals into values can be read directly by the user. The microcontroller was chosen as a used device. The selected microcontroller system is Arduino Uno because has been coupled with input and output ports so users only need to enter programs related to the system being created. In the other hand Arduino Uno by considering the low cost and practical. For the measurement system, the RTD output signal must be conditioned into a digital signal using the ADC so that it can be processed by the microcontroller. From testing instrument obtained that the system has been able to convert analog RTD signals into digital signals. The range of measurement is -176°C to  0°C with an accuracy of ± 0.20 / mV. 


Author(s):  
Fred V. Brock ◽  
Scott J. Richardson

Sensor performance characteristics are generally divided into at least two categories: static and dynamic. Additional categories sometimes used include drift and exposure errors. The performance of sensors in conditions where the measurand is constant or very slowly changing can be characterized by static parameters. Dynamic performance modeling requires the use of differential equations to account for the relation between sensor input and output when the input is rapidly varying. Static characteristics due to friction or other nonlinear effects would vastly complicate the differential equations so, even when the input is not steady, static and dynamic characteristics are considered separately. Static characteristics are determined by carefully excluding dynamic effects. Dynamic characteristics are assessed by assuming that all static effects have been excluded or compensated. Many of these terms have been encountered in chaps. 1 and 2, although without formal definitions. Analog signal. A signal whose information content is continuously proportional to the measurand. If an electrical temperature sensor has a voltage output, that voltage signal fluctuates with the sensor temperature. Voltage output would be continuously proportional to the measurand (temperature) and is analogous to it, hence we refer to the sensor output as an analog signal. Data display. Any mechanism for displaying data to the user. The stem of a mercury-in-glass thermometer with attached scale is a data display. Data storage. A memory element or mechanism for holding data and later recovering them such as a disk or magnetic tape. Again, this could be as simple as a piece of paper. Data transmission. The process of sending a signal from one place to another. The data transmission medium could be a piece of paper, a magnetic tape, radio or light waves, or telephone wires. Digital signal. A signal whose information content varies in discrete steps. The step size can be made arbitrarily small such that a plot of a digitized signal could also resemble the analog signal. However, the granularity of a digital signal will be revealed if it is examined in sufficient detail.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1697
Author(s):  
Xicong Li ◽  
Zabih Ghassemlooy ◽  
Stanislav Zvánovec ◽  
Paul Anthony Haigh

With advances in solid-state lighting, visible light communication (VLC) has emerged as a promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure by adding data communication capabilities to the illumination functionality. The last decade has witnessed the evolution of the VLC concept through global standardisation and product launches. Deploying VLC systems typically requires replacing existing light sources with new luminaires that are equipped with data communication functionality. To save the investment, it is clearly desirable to make the most of the existing illumination systems. This paper investigates the feasibility of adding data communication functionality to the existing lighting infrastructure. We do this by designing an experimental system in an indoor environment based on an off-the-shelf LED panel typically used in office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase (CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to the residual ripple of the bias current that is generated by the panel’s driver. Flicker is introduced by the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than several kilohertz). This significantly reduces the transmitter’s modulation depth. Concurrently, the driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.


Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 551-584
Author(s):  
Samir Mustapha ◽  
Ye Lu ◽  
Ching-Tai Ng ◽  
Pawel Malinowski

The development of structural health monitoring (SHM) systems and their integration in actual structures has become a necessity as it can provide a robust and low-cost solution for monitoring the structural integrity of and the ability to predict the remaining life of structures. In this review, we aim at focusing on one of the important issues of SHM, the design, and implementation of sensor networks. Location and number of sensors, in any SHM system, are of high importance as they impact the system integration, system performance, and accuracy of assessment, as well as the total cost. Hence we are interested in shedding the light on the sensor networks as an essential component of SHM systems. The review discusses several important parameters including design and optimization of sensor networks, development of academic and commercial solutions, powering of sensors, data communication, data transmission, and analytics. Finally, we presented some successful case studies including the challenges and limitations associated with the sensor networks.


2013 ◽  
Vol 427-429 ◽  
pp. 1268-1271
Author(s):  
Xue Wen He ◽  
Ying Fei Sheng ◽  
Kuan Gang Fan ◽  
Le Ping Zheng ◽  
Qing Mei Cao

In view of the existing flaws of traditional manual observations, a new type of tailing reservoir safety monitoring and warning system based on ZigBee and LabVIEW was designed. The system chose SoC chip CC2530 as the RF transceiver and designed the low-power wireless sensor networks nodes to collect and process the data of tailing reservoir. It chose ZigBee 2007 as the network communication protocol, and uploaded the data to PC by RS232 serial port. The monitoring and warning interface of PC was completed with LabVIEW. The testing results show that the data transmission of the network is stable and the system is suitable for real-time monitoring and warning of the tungsten tailing reservoir.


2012 ◽  
Vol 459 ◽  
pp. 544-548 ◽  
Author(s):  
Wei Liang ◽  
Jian Bo Xu ◽  
Wei Hong Huang ◽  
Li Peng

Network security technology ensures secure data transmission in network. Meanwhile, it brings extra overhead of security system in terms of cost and performance, which seriously affects the rapid development of existing high-speed encryption systems. The existing encryption technology cannot meet the demand of high security, low cost and high real-time. For solving above problems, an ECC encryption engine architecture based on scalable public key cipher and a high-speed configurable multiplication algorithm are designed. The algorithm was tested on FPGA platform and the experiment results show that the system has better computation speed and lower cost overhead. By comparing with other systems, our system has benefits in terms of hardware overhead and encryption time ratio


2016 ◽  
Vol 723 ◽  
pp. 572-578
Author(s):  
Li Fu ◽  
Qi Chi Le ◽  
Xi Bo Wang ◽  
Xuan Liu ◽  
Wei Tao Jia

In recent years, the development and utilization of renewable generation have attracted more and more attention, and the grid puts forward higher requirements to the energy storage technology, especially for security, stability and reliability. The liquid metal battery (LMB) consists of two liquid metal electrodes and a molten salt electrolyte, which will be segregated into three liquid layers naturally. Being low-cost and long-life, it is regarded as the best choice for grid-level large-scale energy storage. This paper describes the main structure and working principle of the LMB, analyzes the advantages and disadvantages of the LMB when compared with the traditional batteries, and explores the feasibility and economy when it is used as a kind of large-scale energy storage applied in the power grid. The paper also makes a comprehensive comparison on the performance of several LMBs, and points out the LMB’s research and development in the future.


2015 ◽  
Vol 785 ◽  
pp. 106-110
Author(s):  
M.N.M. Hussain ◽  
Ahmad Maliki Omar ◽  
Intan Rahayu Ibrahim ◽  
Kamarulazhar Daud

An identification system of multiple-input single-output (MISO) model is developed in controlling dsPIC microcontroller of positive output buck-boost (POBB) converters for module mismatch condition of photovoltaic (PV) system. In particular, the possibility of the scheme is to resolve the mismatch losses from the PV module either during shading or mismatch module occurrences. The MPPT algorithm is simplified by identification approach of indirect incorporated with a simple incremental direct method to form a combined direct and indirect (CoDId) algorithms. Irregular consumption of solar irradiation on a PV module shall step-up or step down the voltage regarding to the desired DC output voltage of POBB converter. This optimized algorithm will ensure that the PV module to kept at maximum power point (MPP), preventing power loss during module mismatch incident in PV module especially during partial shading condition. The simulation and laboratory results for PV module of polycrystalline Mitsubishi PV-AE125MF5N indicate that the proposed model and development of PV system architecture performs well, while the efficiency up to 97.7% at critical of low solar irradiance level. The controlling signal is based on low-cost embedded microcontroller of dsPIC30F Digital Signal Control (DSC).


Sign in / Sign up

Export Citation Format

Share Document