scholarly journals Study on the Effect of Prawn (Machrobrachuim rosenbergii) Chitosan Coating on Peeled Shallot (Allium ascalonicum)

2019 ◽  
Vol 7 (3) ◽  
pp. 927-935 ◽  
Author(s):  
G. Nagamaniammai ◽  
M. Chithra ◽  
M. Udhaya Ganga

Shallot (Allium ascalonicum) is the most important commercial vegetable crop grown in India. Shallot peeling is tough and consumes time. The availability of peeled shallots in markets will reduce the time consumed on peeling shallots for cooking. But peeled shallot does not have longer shelf life. Edible coating for peeled shallots can reduce spoilage and can inhibit microbial growth too. The Chitosan coating of shallots was based on the dipping method of coating fruits and vegetables. The study on coating chitosan in shallots and different parameters with varying composition were analyzed. The physio-chemical parameters like protein content, carbohydrate content, calcium content and total phenols content and weight loss shows that there is a significant difference with coated and uncoated Shallot stored at 4C for a period of 15 days. The microbial studies and physical characteristic studies show that number of microbes and decay is significantly less for coated onion samples compared with uncoated samples respectively. The inhibitory effect of chitosan produced from prawn shell against fungi was studied by adding 0.2% oregano oil, 0.4% of Tween 80 (polysorbate 80) and 0.7% of Glycerol. The Zone of inhibition was obtained has which were found to be 3.1cm, 1.5cm and 2.9cm for Oregano (Or), Thyme (Th) and Mint (M) leaves. Addition of 0.1% Tween 80 to 1.5 % chitosan in acetic acid solution improved the effectiveness of coating on the Shallot skin. The above study revealed that Chitosan coatings were in effect on successful quality improvement and extending shelf life of Shallot by delayed ripening, lowered respiration rate, regulated gas exchange, decrease in transpiration rate, retaining fruit firmness, reduction in weight loss etc.

Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 317 ◽  
Author(s):  
Dan Xu ◽  
Jing Wang ◽  
Dan Ren ◽  
Xiyu Wu

To explore the influences of chitosan coating structure and structure changes during storage on egg preservation, eggs coated by chitosan solution for single time (CS1), two times (CS2), and three times (CS3) were prepared separately and stored with untreated eggs (CK1), eggs washed by water (CK2) and eggs treated by acetic acid solution (CK3) at 25 °C, 80% RH. The weight loss, Haugh unit, yolk index, albumen pH, eggshell morphologies and infrared (FTIR—Fourier Transform Infrared) spectra of all the samples were monitored. CS2 and CS3 presented the lowest weight loss, highest Haugh unit and yolk index, stabilized pH, and the highest thickness of chitosan coating layers (>2 μm) among all the groups, which extended egg shelf life for 20 days longer compared to CK1 and CK2. CS1 with very thin chitosan coating showed similar egg qualities with CK3, which are second only to CS2 and CS3. Furthermore, destructions were found on chitosan coatings during storage as revealed by the eggshell morphologies and FTIR spectra, which caused the quality deterioration of eggs. The results demonstrated that eggs with the thickest coating showed the best qualities during storage, while destructions on coating layers led to the quality drop of eggs.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Isaac Addo ◽  
Kwadwo Gyasi Santo ◽  
Abdul Aziz Khalid ◽  
Emmanuel Ackah

Abstract Background Two separate experiments were conducted in the minor season from September to November, 2019 and major season from March to May, 2020 to determining the type of soil amendment and transplanting age that can best improve the post-harvest quality and shelf life of sweet pepper fruits at Benso oil palm plantation of Adum Banso Estate in the Mpohor District of the Western Region of Ghana. The experiments were conducted as a 4 × 2 factorial, arranged in a Randomized Complete Block Design. Four fertilizer treatments including no fertilizer (control), 10 tons/ha of poultry manure, 300 kg/ha of NPK 15-15-15 and 5 t/ha of poultry manure + 150 kg/ha of NPK 15-15-15 and two ages of transplants including 6-week-old seedlings and 7-week-old seedlings were applied during the cultivation periods and were later evaluated of their effects on the post-harvest quality and shelf life of harvested fruits after a two-weeks storage period. Data collected on weight loss, shrinkage, decayed fruits and shelf life of harvested fruits were subjected to analysis of variance using the Genstat Statistical package. The least significant difference criterion was used to separate treatment means at 5% probability. Results Post-harvest qualities of sweet pepper fruits were not significantly influenced by age of transplant throughout the study. Fertilizer application generally increased percentage fruit weight loss, fruit shrinkage, fruit decay and reduced shelf life of sweet pepper fruits in the major season. Sole application of poultry manure mostly enhanced post-harvest quality of sweet pepper fruits in the minor rainy season, but fruit shelf life was improved if no fertilizer was applied. Application of a combination of poultry manure and NPK 15-15-15 to 6-week-old transplants gave relatively low fruit weight loss and shrinkage values. Generally, fruit quality and shelf life were enhanced in 6-week-old transplants treated with no fertilizer. Conclusions The use of poultry manure alone should be encouraged to probably increase yield while improving the quality and shelf life of harvested sweet pepper fruits. Transplanting of 6-week-old seedlings is also encouraged for quality harvested fruits and extended shelf life.


2019 ◽  
Vol 6 (1) ◽  
pp. 41-54
Author(s):  
Md. Belal Hossain Sikder ◽  
M Muksitu Islam

Banana is highly perishable fruit and shelf life is short, which leads resulting post-harvest loss consistently in Bangladesh. To lessen the post-harvest loss and draw out the time span of the usability of banana, green mature bananas were treated with 0.5%, 0.75%, and 1% chitosan, individually. For the subsequent treatments, bananas were stored at room temperature. The viability of the coating in extending fruit’s shelf-life was assessed by evaluated total weight loss, ash content, total soluble solids (TSS), pH, titratable acidity (TA), disease severity and shelf life during the storage period. Chitosan coating reduced respiration activity, thus delaying ripening and the rate of decay due to senescence. The chitosan-coated banana samples had a better outcome on weight loss, ash content, pH, TSS, TA and disease severity values as compared to control samples. Banana coated with 1% chitosan showed less weight reduction and lessened obscuring than different treatments and control. Disease severity was astoundingly lessened by chitosan covering application. Chitosan coating extended banana up to the shelf life of more 2 to 4 days. From this investigation, it demonstrated that 1% chitosan was more appropriate in extending the shelf-life and better quality of banana during ripening and storage at ambient temperature.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1133c-1133
Author(s):  
Ahmed El Ghaouth ◽  
Joseph Arul ◽  
Rathy Ponnampalam ◽  
Francois Castaigne

The effect of chitosan coating on green peppers and cucumbers stored at 13°C and 85% R.H. on weight loss, quality and respiration was assessed. Chitosan coating markedly reduced the weight loss of both green peppers and cucumbers, with greater effect at higher concentration. In addition, color loss, wilting, decay and respiration was significantly lower in coated fruits than in the control.The results of this study indicate that the mechanism by which chitosan coating delay senescence in green peppers and cucumbers is more likely due to its ability to alleviate water stress than to modify the internal microatmosphere.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 470B-470
Author(s):  
Rebecca S. Boone ◽  
Carl E. Sams ◽  
William S. Conway

Calcium has been linked to disease resistance in fruits and vegetables. The effects of calcium nutrition on six hydroponically grown tomato cultivars (`Switch', `Match', `Blitz', `Caruso', `Trust', and `Celebrity') were evaluated in the fall of 1996. Disease resistance and yield were measured for plants grown in either perlite or pine bark mulch. Plants were fertilized with a 5N–11P–26K water-soluble fertilizer solution containing micronutrients and either 60, 120, or 185 mg·L–1 calcium. Disease resistance was determined by measuring disease lesion diameters on mature green harvested fruit 3 to 5 days after inoculating with Botrytis cinerea Pers.: Fr. There was no significant difference in disease when evaluated by medium, cultivar, or calcium treatment. Foliar analysis by Inductively Coupled Argon Plasma Atomic Emission Spectrophotometer (ICAP) indicated that leaf calcium content ranged from 27,000 to 54,000 μg·g–1 dry weight (leaf above fifth flower cluster), but was not significantly different when analyzed by medium, cultivar, or calcium treatment. There was no significant difference in marketable yield due to medium or calcium treatment. Among cultivars, `Trust' had the highest marketable yield at 2.7 kg per plant, which was significantly different from `Celebrity' at 1.6 kg per plant. This experiment suggests that a cheaper medium (pine bark) and lower calcium levels can be utilized in fall tomato production.


2019 ◽  
Vol 70 (2) ◽  
pp. 1495
Author(s):  
D. ANTONIADOU ◽  
A. GOVARIS ◽  
I. AMBROSIADIS ◽  
D. SERGELIDIS

Edible chitosan coating on the surface of ready-to-eat (RTE) bovine meatballs was evaluated for its effect on their shelf life and the control of Listeria monocytogenes at 5 °C. L. monocytogenes was inoculated onto the surface of RTE bovine meatballs with and without edible chitosan coating. The samples were stored at 5 °C. Total aerobic viable count (TVC) and the bacterial counts of L. monocytogenes, lactic acid bacteria and Enterobacteriaceae were determined on days 0,1,7,14,21 and 28. The sensory characteristics were also evaluated at the same time spots by semi trained panelists. The results of the microbiological analysis depicted that the use of edible chitosan membranes reduced all of the microbial populations that were enumerated, and retarded their growth leading to the conclusion that they can prolong the shelf life of these products by 14 days. Moreover, the population of the inoculated L. monocytogenes was about 2 log CFU/g lower in the meatballs coated with chitosan, indicating an inhibitory effect of chitosan in the growth of L. monocytogenes. The sensory analysis showed that the samples coated with chitosan were satisfactorily accepted by the panelists even at day 28, in contrast to the samples without chitosan (control samples) which were unacceptable at day 14. These results indicate that edible chitosan coatings represent a potential agent in controlling L. monocytogenes on the surface of RTE meatballs as well as other RTE meat products, prolonging their shelf life without affecting their sensory characteristics.


2020 ◽  
Vol 73 (1) ◽  
pp. 9099-9108 ◽  
Author(s):  
Junior B. Molina-Hernández ◽  
Andrés Echeverri Castro ◽  
Hugo A. Martinez-Correa ◽  
Margarita M. Andrade-Mahecha

Edible coatings provide food products with a barrier to gases and water vapor exchange; additionally, when complemented with antimicrobial agents, they can be suitable to extend food shelf life. This study aimed to evaluate the effect of using edible coatings based on achira starch (Canna indica L.), microcrystalline cellulose, and natural antimicrobial compounds (garlic and oregano oils) on the quality of double cream cheese during storage at 5 °C for 42 days. The physicochemical characteristics of the cheeses, such as weight loss, hardness, water activity, and color, were evaluated on days 1, 8, 21, and 42. The microbiological analyses were carried out on days 1, 21, and 42, and the sensorial analysis on days 1 and 42. The coated cheese samples maintained the pH value of fresh products during storage, whereas the pH of the uncoated samples progressively decreased. No effect (P≥0.05) was observed at the different storage times on the weight and color of the coated samples, as compared to the control. The hardness of the coated samples was lower (50% for oregano oil treatment and 18% for garlic oil treatment) at the end of the storage, with a significant difference (P≤0.05) from the control. Additionally, the use of coatings containing garlic or oregano oil prevented the growth of pathogenic or contaminating microorganisms on the product during 42-day storage. The results indicated that the use of edible coatings incorporating garlic or oregano oil as antimicrobial compounds are an alternative to extend the shelf life of double cream cheese.


2011 ◽  
Vol 239-242 ◽  
pp. 2158-2162 ◽  
Author(s):  
Cheng Lun Liu ◽  
Chun Lan He ◽  
Tai Ping Xie ◽  
Yu E Yang ◽  
Ting Xia Liang

The preservation of Synsepalum dulcificum has been researched by using chitosan coating as the antistaling agent at room temperature. The physicochemical indexes, such as rot rate, weight loss ratio, scavenging capability of DPPH• radical, total acidity and sensory quality, were assayed during the process of storage. The optimum formulation of the fresh-keeping agent was as follows: 1.5% chitosan, 1% ascorbic acid, 0.1% Tween-80 and 1.0% glycerol. The results showed that the coating films could effectively decrease the loss of fruit nutrition and weight-loss ratio, inhibited the respiration and delayed the senescent course during storage.


1994 ◽  
Vol 57 (2) ◽  
pp. 136-140 ◽  
Author(s):  
SHAO W. FANG ◽  
CHIN F. LI ◽  
DANIEL Y. C. SHIH

The inhibitory effect of chitosan, a deacetylated form of chitin, on the growth of Aspergillus niger and the aflatoxin production of Aspergillus parasiticus was evaluated. The inhibitory effect of chitosan against A. niger was increased as the chitosan concentration was increased from 0.1 to 5.0 mg/ml (pH 5.4). At concentrations of 4.0 or 5.0 mg/ml, chitosan was less effective than potassium sorbate in inhibiting the growth of A. niger. The greatest inhibitory effect of chitosan against A. parasiticus was found at 3.0–5.0 mg/ml. In addition, chitosan could completely prevent aflatoxin production by A. parasiticus at the concentration of 4.0–5.0 mg/ml. Chitosan (2.0 and 5.0 mg/ml) induced considerable leakage of UV-absorbing and proteinaceous material of A. niger at pH 4.8. Using the response surface methodology, a second order polynomial model was derived and used to predict the number of days to obtain visible mold growth under various combinations of chitosan concentrations and °Brix in candied kumquat. The results showed that there was no significant difference in shelf-life extension of candied kumquat at chitosan concentration of 3.5–6.5 mg/ml. However, °Brix had a significant effect on shelf life. Candied kumquat with 6.0 mg/ml chitosan concentration and 61.9° Brix had a predicted mold-free shelf life of 65.3 d.


2012 ◽  
Vol 557-559 ◽  
pp. 943-946 ◽  
Author(s):  
Zhong Li Jiang ◽  
Ai Li Wang ◽  
Xi Hong Li ◽  
Min Peng Zhu ◽  
Jun Wei Wang

The present study studied the effect of chitosan coating with antibrowning agents, including naphthylacetate and cinnamon oil, and modified atmosphere packaging (MAP) on browning of sweet persimmons stored at - 0.3 ~ 0 °C for 3 months. The browning on the surface of sweet persimmons was effectively inhibited by chitosan - based coating and MAP treatment. After 3 months’ storage, samples coated + MAP exerted the lowest browning index(BI), polyphenol oxidase (PPO) activity and malondialdehyde (MDA) content, which indicated that the coated + MAP treatment could offer an excellent inhibitory effect on the browning. Both edible coating and MAP treatment cause changes in respiration rate of sweet persimmons. This research could be valuable for the development of application to edible coating and MAP for improving the shelf - life properties of sweet persimmons.


Sign in / Sign up

Export Citation Format

Share Document