scholarly journals The Role of Vitamin D in Adipose Tissue Biology: Adipocyte Differentiation, Energy Metabolism, and Inflammation

2021 ◽  
Vol 10 (2) ◽  
pp. 130
Author(s):  
Chan Yoon Park ◽  
Sung Nim Han
2012 ◽  
Vol 108 (11) ◽  
pp. 1915-1923 ◽  
Author(s):  
Cherlyn Ding ◽  
Dan Gao ◽  
John Wilding ◽  
Paul Trayhurn ◽  
Chen Bing

Vitamin D deficiency and the rapid increase in the prevalence of obesity are both considered important public health issues. The classical role of vitamin D is in Ca homoeostasis and bone metabolism. Growing evidence suggests that the vitamin D system has a range of physiological functions, with vitamin D deficiency contributing to the pathogenesis of several major diseases, including obesity and the metabolic syndrome. Clinical studies have shown that obese individuals tend to have a low vitamin D status, which may link to the dysregulation of white adipose tissue. Recent studies suggest that adipose tissue may be a direct target of vitamin D. The expression of both the vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) genes has been shown in murine and human adipocytes. There is evidence that vitamin D affects body fat mass by inhibiting adipogenic transcription factors and lipid accumulation during adipocyte differentiation. Some recent studies demonstrate that vitamin D metabolites also influence adipokine production and the inflammatory response in adipose tissue. Therefore, vitamin D deficiency may compromise the normal metabolic functioning of adipose tissue. Given the importance of the tissue in energy balance, lipid metabolism and inflammation in obesity, understanding the mechanisms of vitamin D action in adipocytes may have a significant impact on the maintenance of metabolic health. In the present review, we focus on the signalling role of vitamin D in adipocytes, particularly the potential mechanisms through which vitamin D may influence adipose tissue development and function.


Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3525-3538 ◽  
Author(s):  
Hong Guo ◽  
Merlijn Bazuine ◽  
Daozhong Jin ◽  
Merry M. Huang ◽  
Samuel W. Cushman ◽  
...  

Lipocalin 2 (Lcn2) has previously been characterized as an adipokine/cytokine playing a role in glucose and lipid homeostasis. In this study, we investigate the role of Lcn2 in adipose tissue remodeling during high-fat diet (HFD)-induced obesity. We find that Lcn2 protein is highly abundant selectively in inguinal adipose tissue. During 16 weeks of HFD feeding, the inguinal fat depot expanded continuously, whereas the expansion of the epididymal fat depot was reduced in both wild-type (WT) and Lcn2−/− mice. Interestingly, the depot-specific effect of HFD on fat mass was exacerbated and appeared more pronounced and faster in Lcn2−/− mice than in WT mice. In Lcn2−/− mice, adipocyte hypertrophy in both inguinal and epididymal adipose tissue was more profoundly induced by age and HFD when compared with WT mice. The expression of peroxisome proliferator-activated receptor-γ protein was significantly down-regulated, whereas the gene expression of extracellular matrix proteins was up-regulated selectively in epididymal adipocytes of Lcn2−/− mice. Consistent with these observations, collagen deposition was selectively higher in the epididymal, but not in the inguinal adipose depot of Lcn2−/− mice. Administration of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone (Rosi) restored adipogenic gene expression. However, Lcn2 deficiency did not alter the responsiveness of adipose tissue to Rosi effects on the extracellular matrix expression. Rosi treatment led to the further enlargement of adipocytes with improved metabolic activity in Lcn2−/− mice, which may be associated with a more pronounced effect of Rosi treatment in reducing TGF-β in Lcn2−/− adipose tissue. Consistent with these in vivo observations, Lcn2 deficiency reduces the adipocyte differentiation capacity of stromal-vascular cells isolated from HFD-fed mice in these cells. Herein Rosi treatment was again able to stimulate adipocyte differentiation to a similar extent in WT and Lcn2−/− inguinal and epididymal stromal-vascular cells. Thus, combined, our data indicate that Lcn2 has a depot-specific role in HFD-induced adipose tissue remodeling.


2010 ◽  
Vol 104 (12) ◽  
pp. 1124-1132 ◽  
Author(s):  
Hiroyuki Matsuno ◽  
Eri Kawashita ◽  
Kiyotaka Okada ◽  
Hidetaka Suga ◽  
Shigeru Ueshima ◽  
...  

SummaryUrokinase-type plasminogen activator receptor (uPAR) plays a role in cellular responses which include cellular adhesion, differentiation, proliferation and migration. The aim of this study was to clarify the role of uPAR on the development of adipose tissue. To clarify the role of uPAR on adipogenesis, we examined the effect of uPAR overexpression and uPAR deficiency on the adipocyte differentiation. Adipocyte differentiation was induced by incubation of 3T3-L1 cells with differentiation media containing insulin, dexamethasone, and 1-methyl-3-isobutylxanthin. uPAR overexpression by transfection of uPAR expression vector induced adipocyte differentiation. In addition, we examined the difference in adipocyte differentiation of mesenchymal stem cells from wild-type mice and uPAR knockout (uPAR-/-) mice. The uPAR deficiency attenuated differentiation media-induced adipocyte differentiation. Moreover, we found that the inhibition of phosphatidylinositol 3-kinase (PI3K) pathway attenuated uPAR overexpression-induced adipocyte differentiation, and uPAR overexpression induced the activation of Akt. We also found that an increase of the adipose tissue mass in uPAR-/- mice was less than that observed in wild-type mice. The present results suggest that uPAR plays a pivotal role in the development of adipose tissue through PI3K/Akt pathway.


2018 ◽  
Vol 48 (1) ◽  
pp. 397-408 ◽  
Author(s):  
Ingrid  Felicidade ◽  
Daniele Sartori ◽  
Susan L.M. Coort ◽  
Simone Cristine Semprebon ◽  
Andressa Megumi Niwa ◽  
...  

Background/Aims: Compared with non-obese individuals, obese individuals commonly store more vitamin D in adipose tissue. VDR expression in adipose tissue can influence adipogenesis and is therefore a target pathway deserving further study. This study aims to assess the role of 1,25(OH)2D3 in human preadipocyte proliferation and differentiation. Methods: RTCA, MTT, and trypan blue assays were used to assess the effects of 1,25(OH)2D3 on the viability, proliferation, and adipogenic differentiation of SGBS cells. Cell cycle and apoptosis analyses were performed with flow cytometry, triglycerides were quantified, and RT-qPCR was used to assess gene expression. Results: We confirmed that the SGBS cell model is suitable for studying adipogenesis and demonstrated that the differentiation protocol induces cell maturation, thereby increasing the lipid content of cells independently of treatment. 1,25(OH)2D3 treatment had different effects according to the cell stage, indicating different modes of action driving proliferation and differentiation. In preadipocytes, 1,25(OH)2D3 induced G1 growth arrest at both tested concentrations without altering CDKN1A gene expression. Treatment with 100 nM 1,25(OH)2D3 also decreased MTT absorbance and the lipid concentration. Moreover, increased normalized cell index values and decreased metabolic activity were not induced by proliferation or apoptosis. Exposure to 100 nM 1,25(OH)2D3 induced VDR, CEBPA, and CEBPB expression, even in the preadipocyte stage. During adipogenesis, 1,25(OH)2D3 had limited effects on processes such as VDR and PPARG gene expression, but it upregulated CEBPA expression. Conclusions: We demonstrated for the first time that 1,25(OH)2D3 induces changes in preadipocytes, including VDR expression and growth arrest, and increases the lipid content in adipocytes treated for 16 days. Preadipocytes are important cells in adipose tissue homeostasis, and understanding the role of 1,25(OH)2D3 in adipogenesis is a crucial step in ensuring adequate vitamin D supplementation, especially for obese individuals.


2017 ◽  
Vol 66 (1) ◽  
pp. S168
Author(s):  
D. Jahn ◽  
D. Dorbath ◽  
A.-K. Schilling ◽  
L. Gildein ◽  
J. Schmitt ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Julia H. Goedecke ◽  
Naomi S. Levitt ◽  
Juliet Evans ◽  
Nicole Ellman ◽  
David John Hume ◽  
...  

Women of African ancestry, particularly those living in industrialized countries, experience a disproportionately higher prevalence of type 2 diabetes (T2D) compared to their white counterparts. Similarly, obesity and insulin resistance, which are major risk factors for T2D, are greater in black compared to white women. The exact mechanisms underlying these phenomena are not known. This paper will focus on the role of adipose tissue biology. Firstly, the characteristic body fat distribution of women of African ancestry will be discussed, followed by the depot-specific associations with insulin resistance. Factors involved in adipose tissue biology and their relation to insulin sensitivity will then be explored, including the role of sex hormones, glucocorticoid metabolism, lipolysis and adipogenesis, and their consequent effects on adipose tissue hypoxia, oxidative stress, and inflammation. Finally the role of ectopic fat deposition will be discussed. The paper proposes directions for future research, in particular highlighting the need for longitudinal and/or intervention studies to better understand the mechanisms underlying the high prevalence of insulin resistance and T2D in women of African ancestry.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Miroslava Cedikova ◽  
Michaela Kripnerová ◽  
Jana Dvorakova ◽  
Pavel Pitule ◽  
Martina Grundmanova ◽  
...  

Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Priscila Santos ◽  
Bruna Rafacho ◽  
Andréa Gonçalves ◽  
Vanessa Pires ◽  
Ana Angélica Fernandes ◽  
...  

2016 ◽  
Vol 4 (3) ◽  
pp. 526-532 ◽  
Author(s):  
Zujaja-Tul-Noor Hamid Mehmood ◽  
Dimitrios Papandreou

Vitamin D related research continues to expand and theorise regarding its involvement in obesity, as both hypovitaminosis D and obesity strike in pandemic proportions. Vitamin D plays an important role in immune system through Vitamin D Receptors (VDR), which are transcription factors located abundantly in the body. Due to this characteristic, it is potentially linked to obesity, which is a state of inflammation involving the release of cytokines from adipose tissue, and exerting stress on other organs in a state of positive energy balance. Research trials in the past couple of years and systematic reviews from SCOPUS and MEDLINE will be discussed. The role of Vitamin D throughout the lifespan (from fetal imprinting until older age), and in various other obesity mediated chronic conditions shall be highlighted. Various mechanisms attributed to the inverse relationship of Vitamin D and obesity are discussed with research gaps identified, particularly the role of adipokines, epigenetics, calcium and type of adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document