scholarly journals Flavonoid Biosynthetic Pathway: Genetics and Biochemistry

2021 ◽  
Vol 18 (2) ◽  
pp. 271-286
Author(s):  
Ramanjeet Kaur ◽  
Lubna Aslam ◽  
Shajaat Hussain ◽  
Nisha Kapoor ◽  
Ritu Mahajan

Plants are sessile organisms which are capable of producing a large array of metabolites, required for their adaption and survival. Flavonoids are low molecular weight metabolites with C6–C3–C6 carbon backbones and are categorised into different classes on the basis of structural organization and polymerization. The biosynthesis and distribution of flavonoids depends on the development stage of the plant as well as on diverse environmental conditions. They play a significant role as pigments, phytoalexins, attractants of pollinators and promotes auxin transport. In plants, antioxidant and antimicrobial activities are attributed to interaction of flavonoids with various enzymes, transcription factor and signalling pathways. This review aims to provide the current understanding of structure, their types, biosynthesis and regulation of flavonoid pathway that provide the insights to the key regulating factors and their interactions which makes them the most promising and interesting targets for plant breeding programs to enhance the value-added products in plants. In this review the deep knowledge of flavonoid regulation by micro-RNAs has been provided that attracts the biotechnologists to develop new molecular approaches so as to engineer various plant metabolic pathways to enhance the health-promoting metabolites in plants for human consumption.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Delphine M. Pott ◽  
Sara Durán-Soria ◽  
Sonia Osorio ◽  
José G. Vallarino

AbstractPlant quality trait improvement has become a global necessity due to the world overpopulation. In particular, producing crop species with enhanced nutrients and health-promoting compounds is one of the main aims of current breeding programs. However, breeders traditionally focused on characteristics such as yield or pest resistance, while breeding for crop quality, which largely depends on the presence and accumulation of highly valuable metabolites in the plant edible parts, was left out due to the complexity of plant metabolome and the impossibility to properly phenotype it. Recent technical advances in high throughput metabolomic, transcriptomic and genomic platforms have provided efficient approaches to identify new genes and pathways responsible for the extremely diverse plant metabolome. In addition, they allow to establish correlation between genotype and metabolite composition, and to clarify the genetic architecture of complex biochemical pathways, such as the accumulation of secondary metabolites in plants, many of them being highly valuable for the human diet. In this review, we focus on how the combination of metabolomic, transcriptomic and genomic approaches is a useful tool for the selection of crop varieties with improved nutritional value and quality traits.



ALGAE ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 231-240
Author(s):  
Soo Hong Kim ◽  
Young Dae Kim ◽  
Mi Sook Hwang ◽  
Eun Kyoung Hwang ◽  
Hyun Il Yoo

Saccharina sculpera is highly valued for human consumption and value-added products. However, natural resources of this kelp have decreased sharply and it is in danger of extinction. Resources recovery through cultivation is being trialed to enable the sustainable use of this species. In this study, the temperature range for survival and optimal growth of juvenile S. sculpera was identified and applied to field cultivation. This study investigated the survival and growth of juvenile S. sculpera under six temperatures (i.e., 5, 10, 15, 16, 18, and 20°C) and two light intensities (i.e., 20 and 40 μmol photons m-2 s-1) in an indoor culture experiment. In these experiments, the blade length decreased at 16°C under the both light intensities. The thalli died at 20°C and 20 μmol photons m-2 s-1, and at 18‒20°C and 40 μmol photons m-2 s-1. During the field cultivation, early growth of S. sculpera was highest at the 5 m depth and growth decreased as the water depth increased. When the initial rearing depth was maintained without adjustment throughout the cultivation period (from December to October), all the cultivated S. sculpera plants died during August and September. However, S. sculpera plants lowered from 5 to 15 m and grew to 90.8 ± 13.1 cm in July. The seawater temperature at 15 m depth was similar to the upper level of thermal tolerance demonstrated by juvenile S. sculpera in the indoor culture experiments (16°C or lower). The plants were subsequently lowered to 25 m depth in August, which eventually led to their maturation in October. The present study confirmed that improved growth rates and a delay in biomass loss can be achieved by adjusting the depth at which the seaweeds are grown during the cultivation period. These results will contribute to the establishment of sustainable cultivation systems for S. sculpera.



2020 ◽  
Vol 61 (1) ◽  
pp. 25-36
Author(s):  
Clayton G. Campbell ◽  
Mio Nagano

Buckwheat crop improvement by breeding has been taking place over the past 100 years or more. During this time there has been improvements in many desirable agronomic characteristics which has resulted in higher yields in many of the breeding programs. Phenotypic modifications, such as dwarf, semi-dwarf and branching have been reported. There has also been an effort to increase flower number as this has been shown in cross pollinating buckwheat, to increase yields. Flower cluster modifications and their effects on yield have also been studied. Increased reports on the discovery of buckwheat wild species have been reported from several programs with many interspecific crosses having taken place. Several of these crosses were performed with Fagopyrum esculentum in efforts to increase variability which can be used to increase yield potential as well as to obtain increased nutritional components.  More recent efforts have focused on the development of self-pollinating buckwheat, both from introgression of genes from Fagopyrum homotropicum as well as from mutations in cross pollinating buckwheat. The main problem has been in breeding depression which has occurred in many of the reported attempts. However, high yielding homomorphic, self-pollinating varieties have been developed and are now in commercial production. There is now emphasis being placed on many of the nutritional aspects of buckwheat flour as well as value added components. It is expected that this will increase over time.  Key words: Buckwheat breeding, homomorphic, autogamous buckwheat.   Izvleček Žlahtnjenje ajde poteka že več kot 100 let. V tem času je bila dosežena izboljšava željenih agronomskih lastnosti, kar je pri mnogih programih žlahtnjenja omogočilo večje pridelke. Raziskovalci poročajo o fenotipskih modifikacijah, kot je pritlikava ali pol-pritlikava rast in razvejanje. Za povečanje pridelka so bile raziskane modifikacije socvetij. Število poročil o odkritjih divjih sorodnikov ajde in o mnogih medvrstnih križanjih se je v zadnjem času povečalo. V mnoga od teh križanj je bila vključena navadna ajda (Fagopyrum esculentum), da bi povečali  variabilnost, kar bi lahko omogočilo povečanje pridelka in izboljšanje prehranskih lastnosti. Novejša prizadevanja so se osredotočila na razvoj samooplodnosti pri ajdi, z vključitvijo genov vrste Fagopyrum homotropicum, kot tudi mutacij pri ajdi, ki se je opraševala navzkrižno.  Pri tem je bila glavna težava preseči  depresijo zaradi samooploditev, depresija se je pojavila pri večih poskusih samooploditve. Ne glede na to je uspelo dobiti visokorodne homomorfne samooplodne sorte za ponudbo na trgu semen. Sedaj se prizadevanja usmerjajo k izboljšanju prehranske vrednosti ajde in pomembnih sestavin v ajdovi moki. Pričakovati je, da se bo pomen prehranske vrednosti ajde sčasoma še povečeval. Ključne besede: žlahtnjenje ajde, homomorfnost, samo­oplodna ajda



2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Reann Garrett ◽  
Danielle Bellmer ◽  
William McGlynn ◽  
Patricia Rayas-Duarte

Brewer’s spent grain (BSG) is a processing waste generated in large quantities by the brewing industry. It is estimated that over 38 million tons of BSG is produced worldwide each year and is usually used as animal feed, composted, or thrown into landfills. BSG contains valuable nutritional components, including protein, fiber, and antioxidants. Due to its brittle texture, strong nutty flavors, and dark color profiles, BSG has seen limited use in food products for human consumption. The objective of this study was to develop a palatable chip product that maximized the level of inclusion of BSG. Chips were produced that contained BSG levels ranging from 8% to 40%, and the physical and sensory properties of the chips were evaluated. Spent grain samples were provided by Iron Monk in Stillwater and were dried at a low temperature and milled into flour for use in the chip formulation. BSG chips were evaluated for water activity, color, and texture (fracture force). An informal sensory evaluation was conducted to evaluate flavor, texture, and probability of purchase using a 5-point hedonic rating scale. Results showed that there were no significant differences in the texture of the chips containing different levels of BSG. The color measurements showed no significant differences between L ∗ and a ∗ values for the chips containing different inclusion levels of BSG, but there were some differences in the b ∗ values. Results from the sensory evaluation showed that consumers preferred the texture of chips with 40% BSG over chips with 8% BSG, and they were also more likely to purchase the 40% BSG chips. There were no significant differences in flavor among the chips containing different inclusion levels of BSG. These results suggest that, for a chip-type product, BSG inclusion levels up to 40% are possible with positive consumer responses. Development of an alternative value-added product represents an opportunity for breweries nationwide to turn a processing waste into a future asset.



2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Nesibe Ebru Kafkas ◽  
Müberra Kosar ◽  
Ayşe Tülin Öz ◽  
Alyson E. Mitchell

Phenolic compounds are a group of secondary plant metabolites, many with health-promoting properties that are present in all parts of plants. They have an aromatic structure, including either one or more hydroxyl groups giving them the ability to stabilize free radicals and protect biological tissues against damage related to reactive oxygen species. Phenolic compounds are concentrated in the fruit of plants, and therefore, the fruit can be an important dietary source of these phytochemicals, which exist as monomers, or bound to one another. Polyphenolic compounds are classified into different subclasses based upon the number of phenol ring systems that they contain, saturation, and length of the carbon chain that bind the rings to one another. The phenolic acids present in fruit tissues protect the plant against disease, infections, UV radiation, and insect damage. For this reason, the beneficiary effects of phenolic compounds are continually being investigated for their health-promoting properties and for meeting increased consumer demand for healthy nutritious food. Due to the functional properties of polyphenolic compounds, there is increased interest on improving extraction, separation, and quantification techniques of these valuable bioactive compounds, so they can be used as value-added ingredients in foods, pharmaceuticals, and cosmetics. This review provides information on the most advanced methods available for the analysis of phenolics in fruits.



Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 474 ◽  
Author(s):  
Jesús Patrón-Vázquez ◽  
Lizzie Baas-Dzul ◽  
Nelly Medina-Torres ◽  
Teresa Ayora-Talavera ◽  
Ángeles Sánchez-Contreras ◽  
...  

Lemon processing generates thousands of tons of residues that can be preserved as flours by thermal treatment to obtain phenolic compounds with beneficial bioactivities. In this study, the effect of different drying temperatures (40, 50, 60, 70, 80, 90, 100 and 110 °C) on the Total Phenolic Content (TPC), antioxidant and antimicrobial activities of phenolic compounds present in Citrus. lemon (L.) Burn f waste was determined. Identification and quantification of phenolic compounds were also performed by UPLC-PDA and UPLC-ESI-MS analysis. Eriocitrin (19.79–27.29 mg g−1 DW) and hesperidin (7.63–9.10 mg g−1 DW) were detected as the major phenolic compounds in the flours by UPLC-PDA and confirmed by UPLC-ESI-MS. Antimicrobial activity determined by Minimum Inhibitory Concentration (MIC) against Salmonella typhimurium, Escherichia coli and Staphylococcus aureus was observed. Accordingly, a stable functional flour as a source of bioactive phenolic compounds obtained from lemon residues at 50 °C may be produced as a value-added product useful in various industrial sectors.



Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Vadim G. Lebedev ◽  
Natalya M. Subbotina ◽  
Oleg P. Maluchenko ◽  
Tatyana N. Lebedeva ◽  
Konstantin V. Krutovsky ◽  
...  

Strawberry (Fragaria) and raspberry (Rubus) are very popular crops, and improving their nutritional quality and disease resistance are important tasks in their breeding programs that are becoming increasingly based on use of functional DNA markers. We identified 118 microsatellite (simple sequence repeat—SSR) loci in the nucleotide sequences of flavonoid biosynthesis and pathogenesis-related genes and developed 24 SSR markers representing some of these structural and regulatory genes. These markers were used to assess the genetic diversity of 48 Fragaria and Rubus specimens, including wild species and rare cultivars, which differ in berry color, ploidy, and origin. We have demonstrated that a high proportion of the developed markers are transferable within and between Fragaria and Rubus genera and are polymorphic. Transferability and polymorphism of the SSR markers depended on location of their polymerase chain reaction (PCR) primer annealing sites and microsatellite loci in genes, respectively. High polymorphism of the SSR markers in regulatory flavonoid biosynthesis genes suggests their allelic variability that can be potentially associated with differences in flavonoid accumulation and composition. This set of SSR markers may be a useful molecular tool in strawberry and raspberry breeding programs for improvement anthocyanin related traits.



2019 ◽  
Vol 20 (10) ◽  
pp. 2463 ◽  
Author(s):  
Xiaoqiong Chen ◽  
Yu Tao ◽  
Asif Ali ◽  
Zhenhua Zhuang ◽  
Daiming Guo ◽  
...  

Black and red rice are rich in both anthocyanin and proanthocyanin content, which belong to a large class of flavonoids derived from a group of phenolic secondary metabolites. However, the molecular pathways and mechanisms underlying the flavonoid biosynthetic pathway are far from clear. Therefore, this study was undertaken to gain insight into physiological factors that are involved in the flavonoid biosynthetic pathway in rice cultivars with red, black, and white colors. RNA sequencing of caryopsis and isobaric tags for relative and absolute quantification (iTRAQ) analyses have generated a nearly complete catalog of mRNA and expressed proteins in different colored rice cultivars. A total of 31,700 genes were identified, of which 3417, 329, and 227 genes were found specific for red, white, and black rice, respectively. A total of 13,996 unique peptides corresponding to 3916 proteins were detected in the proteomes of black, white, and red rice. Coexpression network analyses of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) among the different rice cultivars showed significant differences in photosynthesis and flavonoid biosynthesis pathways. Based on a differential enrichment analysis, 32 genes involved in the flavonoid biosynthesis pathway were detected, out of which only CHI, F3H, ANS, and FLS were detected by iTRAQ. Taken together, the results point to differences in flavonoid biosynthesis pathways among different colored rice cultivars, which may reflect differences in physiological functions. The differences in contents and types of flavonoids among the different colored rice cultivars are related to changes in base sequences of Os06G0162500, Os09G0455500, Os09G0455500, and Os10G0536400. Current findings expand and deepen our understanding of flavonoid biosynthesis and concurrently provides potential candidate genes for improving the nutritional qualities of rice.



2020 ◽  
Vol 8 (7) ◽  
pp. 511
Author(s):  
Garima Kulshreshtha ◽  
Alan Critchley ◽  
Bruce Rathgeber ◽  
Glenn Stratton ◽  
Arjun H. Banskota ◽  
...  

Poultry and its products are an economical source of high-quality protein for human consumption. In animal agriculture, antibiotics are used as therapeutic agents to treat disease in livestock, or as prophylactics to prevent disease and in so doing enhance production. However, the extensive use of antibiotics in livestock husbandry has come at the cost of increasingly drug-resistant bacterial pathogens. This highlights an urgent need to find effective alternatives to be used to treat infections, particularly in poultry and especially caused by drug-resistant Salmonella strains. In this study, we describe the combined effect of extracts of the red seaweeds Chondrus crispus (CC) and Sarcodiotheca gaudichaudii (SG) and compounds isolated from these in combinations with industry standard antibiotics (i.e., tetracycline and streptomycin) against Salmonella Enteritidis. Streptomycin exhibited the higher antimicrobial activity against S. Enteritidis, as compared to tetracycline with a MIC25 and MIC50 of 1.00 and 1.63 μg/mL, respectively. The addition of a water extract of CC at a concentration of 200 µg/mL in addition to tetracycline significantly enhanced the antibacterial activity (log CFU/mL 4.7 and 4.5 at MIC25 and MIC50, respectively). SG water extract, at 400 and 800 µg/mL (p = 0.05, n = 9), also in combination with tetracycline, showed complete inhibition of bacterial growth. Combinations of floridoside (a purified red seaweed component) and tetracycline (MIC25 and MIC50) in vitro revealed that only the lower concentration (i.e., 15 μg/mL) of floridoside potentiated the activity of tetracycline. Sub-lethal concentrations of tetracycline (MIC50 and MIC25), in combination with floridoside, exhibited antimicrobial activities that were comparable to full-strength tetracycline (23 μg/mL). Furthermore, the relative transcript levels of efflux-related genes of S. Enteritidis, namely marA, arcB and ramA, were significantly repressed by the combined treatment of floridoside and tetracycline, as compared to control MIC treatments (MIC25 and MIC50). Taken together, these findings demonstrated that the red seaweeds CC and SG and their selected, purified components can be used to increase the lifetime of existing, patented antibiotics and can also help to reduce costly (economic and environmental) therapeutic and prophylactic use of antibiotics in poultry. To our knowledge, this is the first report of antibiotic potentiation of existing industry standard antibiotics using red seaweeds and their selected extracts against S. Enteritidis.



Sign in / Sign up

Export Citation Format

Share Document