scholarly journals A Systematic Review of Energy Harvesting from Biomechanical Factors

2019 ◽  
Vol 12 (04) ◽  
pp. 2063-2070
Author(s):  
Bajrang C. ◽  
G. Vaira Suganthi ◽  
R. Tamilselvi ◽  
M. Parisabeham ◽  
A. Nagaraj

Conversion of human mechanical energy to usable electrical energy may seem like something from science fiction for the earliest generation of electronical engineers. But owing to the recent scientific advancements, it is no longer just a fiction but a reality. Researchers are working hard-time to improvise this idea by making attractive advancements in the field every day. This particular advancement gets much attention because it seems to be the most likely candidate to limit the usage of batteries, which have become a paradigm in the commercial world. Harvesting human energy can eliminate the limitations of scientific advancements in the portable and implantable devices due to the usage of batteries as their power source. There are several methods by which energy can be harvested from human activities, including but not restricted to thermoelectric generation, piezoelectric generation and triboelectric generation. These biomechanical phenomena can be tamed for commercial electricity usage under various circumstances. This paper provides a detailed review on these methods and the advancements made so far by researchers all around the globe.

Author(s):  
Frances A. Hill ◽  
Timothy F. Havel ◽  
Carol Livermore

The conceptual design for a portable power source that stores energy in the elastic deformation of carbon nanotubes is presented. The architecture of such a device is comprised of three main system-level components: a CNT-based spring, a generator, and a coupling mechanism between the spring and the generator. A simple model of one possible energy storage device is formulated as a tool to study the feasibility of such a system, the effect of scaling on power output, and the overall efficiency of the system. Energy is stored in a CNT bundle that is stretched in pure axial tension, and an escapement mechanism is used to control the rate of energy release from the system. The stored mechanical energy is converted to electrical energy with a piezoelectric generator. Simulations are run for systems of different size scales, which yield power outputs from 0.4 μW to 4 mW. The efficiency of converting the energy stored in the CNT-based spring to electrical energy approaches 15%. Results of the study show that operating frequency, efficiency, discharge time and power can be acceptable over a range of size scales, leaving some flexibility in the choice of overall size scale, but the high load resistances required to reach high output power favor larger scale systems.


Author(s):  
J. Thiyagarajan ◽  
P. Sathishkumar ◽  
J. Arivarasan ◽  
S. Rajeshkumar ◽  
T.S. Rajalakshmi

Active suspension systems have been used in the recent years as they provide better ride comfort, road handling and safety. The effect of vehicle vibration caused by road roughness is effectively reduced by active suspension system which plays an important role in improving the vehicle performance indices. The application of active suspension system is limited because it consumes high amount of energy. From the point of energy saving, a regenerative active suspension system is designed and its working principle with two modes switched in different conditions was implemented. In this implementation scheme, operating electric circuits are designed based on different working status of the actuator and power source. In the first stage an electromotor mode in which an active suspension system uses a linear electric actuator controlled by constrained PID controller. In the generator mode, under certain circumstances using linear motor as actuators enables to transform mechanical energy of the car vibrations to electrical energy and accumulated to charge the energy-storage capacitor and fed back into the power source when needed.


2011 ◽  
Vol 403-408 ◽  
pp. 3839-3846
Author(s):  
Harkanwal Singh ◽  
Choudhary Mayur Lalchand

For consistent remote health monitoring to be realized, power source must be independent of time factor. We require small, inexpensive, ubiquitous sensors to be realized, all constituents of the device, including the power source, must be directly integrable. For long term application the device must be capable of scavenging power from its surrounding environment. An apparent solution lies in conversion of mechanical energy produced by body movements to electrical energy. Here, we propose a health monitoring system utilizing energy scavenging from body movements for signal transmission through wireless antenna.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


2018 ◽  
Vol 7 (2-1) ◽  
pp. 433
Author(s):  
K. Sri Vamsi Krishna ◽  
Shiva Prasad ◽  
R. Sabari Vihar ◽  
K. Babitha ◽  
K Veeranjaneyulu ◽  
...  

The main objective of this study is to increase the aerodynamic efficiency of turbine mounted novel wing. The main motive behind this work is to reduce the drag by attaining the positive velocity gradient and generate power by converting the stagnation pressure which also acts as emergency power source. By using the energy source of free stream air, Mechanical energy is converted into electrical energy. The obtained power is presented in terms of voltage generated at various angles of attack with different Reynolds number. Experimental analysis is carried out for NACA4415 airfoil at various angles with respect to free stream ranging from 0deg to 30deg from laminar to turbulent Reynolds number. The results were obtained using the research tunnel at IARE aerodynamic facility center. The aerodynamic advantage of this design in terms of voltage is 9.5 V at 35m/s which can be utilized for the aircraft on board power systems.


2019 ◽  
Vol 17 (1) ◽  
pp. 95
Author(s):  
Jumadi Tangko ◽  
Remigius Tandioga ◽  
Ismail Djufri ◽  
Riza Haardiyanti

Flywheel is a rotating mechanical device, which is generally used on four-wheeled vehicles. Flywheel has a moment of inertia that is able to withstand changes in rotational speed. The energy in flywheel is mechanical energy. This mechanical energy will be converted by generators into electrical energy. At the flywheel-based power plant, tests are carried out in the form of rotation, the generator power of the generator under no load or load conditions, and the time needed for this generator to survive. The results showed that the ability of the flywheel-based power plant in the condition without a backup supply to the motor in the condition of a generator without a load is able to generate power of 860.1 W for 22 seconds, while in a load-bearing generator capable of generating electricity by 708.75 W for 18 seconds 


2021 ◽  
Vol 34 (2) ◽  
pp. 157-172
Author(s):  
Deepak Anand ◽  
Singh Sambyal ◽  
Rakesh Vaid

The demand for energy is increasing tremendously with modernization of the technology and requires new sources of renewable energy. The triboelectric nanogenerators (TENG) are capable of harvesting ambient energy and converting it into electricity with the process of triboelectrification and electrostatic-induction. TENG can convert mechanical energy available in the form of vibrations, rotation, wind and human motions etc., into electrical energy there by developing a great scope for scavenging large scale energy. In this review paper, we have discussed various modes of operation of TENG along with the various factors contributing towards its efficiency and applications in wearable electronics.


2019 ◽  
Vol 4 (2) ◽  
pp. 50-55
Author(s):  
Syarif Moh Rofiq Al- Ghony ◽  
Subuh Isnur Haryudo ◽  
Jati Widyo Leksono

The electric motor is a device that serves to transform electrical energy into mechanical energy of motion. In this case the designed control system motor 3 phase by Smartphones through bluetooth network to find out the effective range of extremity. The methods used in the form of data capture of measurement effective range the furthest that can be reached by bluetooth to activate relay SPDT and motor 3 phase. Results of testing the most effective distance of the otomasisasi control system of motor 3 phase maximum as far as 15 meters with a time of pause 0.5 seconds.


2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


Sign in / Sign up

Export Citation Format

Share Document