scholarly journals Study of Structural Properties of Annealed Cdo and Zno Thin Films

2017 ◽  
Vol 14 (2) ◽  
pp. 164-168
Author(s):  
Kishor Hurde ◽  
A. B. Lad

The CdO and ZnO are n- type semiconductors are transparent conducting in nature, inexpensive, mechanically stable and highly resistance to oxidation. In the present work these films have been obtained from thermal annealing of chemically deposited CdS and ZnS thin films. The structural properties of chemically deposited CdS and ZnS thin films and thermally annealed CdO and ZnO thin films have been studied. From x-ray diffraction data it is observed that annealing of the thin films at a particular temperature enhance the structural properties.

2011 ◽  
Vol 519 (13) ◽  
pp. 4366-4370 ◽  
Author(s):  
Chung-Jong Yu ◽  
Nark-Eon Sung ◽  
Han-Koo Lee ◽  
Hyun-Joon Shin ◽  
Young-Duck Yun ◽  
...  

2011 ◽  
Vol 364 ◽  
pp. 119-123 ◽  
Author(s):  
Nor Diyana Md Sin ◽  
M.Z. Musa ◽  
Mohamad Rusop

The effect of radio frequency (R.F) power to the properties of zinc oxide (ZnO) thin films deposited by magnetron sputtering is presented. This project has been focused on electrical, optical and structural properties of ZnO thin films. The effect of variation R.F power at 100 watt ~ 400 watt on the ZnO thin films has been investigated. The thin films were examined using current-voltage (I-V) measurement, UV-Vis-NIR spectrophotometer, x-ray diffraction (XRD) and atomic force microscope (AFM). ZnO thin films were prepared at room temperature in pure argon atmosphere by a R.F magnetron sputtering using ZnO target. I-V measurement indicates that at 300 watt R.F power show the highest conductivity. All films have showed high UV absorption properties using UV-VIS spectrophotometer (JASCO 670). Highly oriented ZnO thin films [002] direction was obtained by using Rigaku Ultima IV. The root means square (rms) roughness for ZnO thin film were about (<2nm) was measured using AFM (Park System XE-100). Keywords-ZnO thin films, R.F power, electrical properties, optical properties, structural properties


2005 ◽  
Vol 475-479 ◽  
pp. 1825-1828
Author(s):  
Ju Hyun Myung ◽  
Nam Ho Kim ◽  
Hyoun Woo Kim

We have demonstrated the growth of ZnO thin films with c-axis orientation at room temperature on various substrates such as Si(100), SiO2, and sapphire by the r.f. magnetron sputtering method. X-ray diffraction (XRD) and scanning electron microscopy altogether indicated that the larger grain size and the higher crystallinity were attained when the ZnO films were deposited on sapphire substrates, compared to the films on Si or SiO2 substrates. The c-axis lattice constant decreased by thermal annealing for the ZnO films deposited on Si or SiO2 substrates, while increased by the thermal annealing for the ZnO films grown on sapphire substrates.


2018 ◽  
Vol 57 (4) ◽  
Author(s):  
Çağlar Duman ◽  
Harun Güney

In this study, zinc oxide (ZnO) thin films are deposited on fluorine doped tin oxide (FTO) substrates by using a successive ionic layer adsorption and reaction (SILAR) method. One of the samples is not annealed and others are annealed at 200, 400 and 600 °C, and all the samples are aged under ultraviolet (UV) light for 19 h. These samples are used to investigate the effect of annealing and aging on the properties of ZnO. Structural properties of the ZnO thin films are examined with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Photoluminescence, transmittance and absorption measurements are used to observe the optical properties of the films. In the literature, there is no study investigating the effect of aging on ZnO thin films deposited with the SILAR method, hence this study fills the gap in the literature.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2019 ◽  

Transparent conducting oxide (TCO) thin films are materials of significance for their applications in optoelectronics and sun powered cells. Fluorine-doped tin oxide (FTO) is an elective material in the advancement of TCO films. This paper reports the impact of fluorine doping on structural, optical and electrical properties of tin oxide thin films for solar cells application. The sol-gel was prepared from anhydrous stannous chloride, SnCl2 as an originator, 2-methoxyethanol as a solvent, di-ethanolamine as a preservative and ammonium fluoride as the dopant source. FTO precursor solution was formulated to obtain 0, 5, 10, 15 and 20 % doping concentration and deposited on glass substrates by means of spin coater at the rate of 2000 rpm for 40 seconds. After pre-heated at 200 oC, the samples were annealed at 600 oC for 2 h. The structural, optical and electrical characteristics of prepared films were characterized using X-ray diffraction (XRD) analysis, UV-visible spectroscopy and electrical measurement. X-ray diffraction (XRD) investigation of the films demonstrated that the films were polycrystalline in nature with tetragonal-cassiterite structure with most extraordinary pinnacle having a grain size of 17.01 nm. Doping with fluorine decreases the crystallite size. There was increment in the absorbance of the film with increasing wavelength and the transmittance was basically reduced with increasing fluorine doping in the visible region. The energy band gaps were in the range of 4.106-4.121 eV. The sheet resistance were observed to decrease as the doping percentage of fluorine increased with exception at higher doping of 15 and 20 %. In view of these outcomes, FTO thin films prepared could have useful application in transparent conducting oxide electrode in solar cell.


2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


1994 ◽  
Vol 235-240 ◽  
pp. 633-634
Author(s):  
M. Pissas ◽  
E. Moraitakis ◽  
V. Phycharis ◽  
D. Niarchos

2015 ◽  
Vol 1107 ◽  
pp. 678-683 ◽  
Author(s):  
Lam Mui Li ◽  
Azmizam Manie Mani ◽  
Saafie Salleh ◽  
Afishah Alias

Zinc Oxide (ZnO) has attracted much attention because of its high optical transmittance approximately ~80 % with a wide band gap of (3.3 eV at 300 K) and a relatively low cost material. ZnO thin films were deposited on plastic substrate using RF powered magnetron sputtering method. The target used is ZnO disk with 99.99 % purity. The sputtering processes are carried out with argon gas that flow from 10-15 sccm. Argon is used to sputter the ZnO target because the ability of argon that can remove ZnO layer effectively by sputtering with argon plasma bombardment. The deposited ZnO thin films are characterized using X-Ray Diffraction (XRD) and UV-Vis Spectrometer. The analysis of X-ray diffraction show that good crystalline quality occurs at nominal thickness of 400 nm. The optical studies showed that all the thin films have high average transmittance of approximately 80 % and the estimated value of optical band gap is within 3.1 eV-3.3 eV range.


Sign in / Sign up

Export Citation Format

Share Document