Evaluation of Low-Cost Optical Particle Counters for Agricultural Exposure Measurements

2021 ◽  
Vol 37 (1) ◽  
pp. 113-122
Author(s):  
Justine M. Olegario ◽  
Swastika Regmi ◽  
Sinan Sousan

HighlightsThe OPC-N3, developed by Alphasense, may be useful in measuring occupational exposure in agricultural settings based on the agreement with mass concentrations measured by gravimetrical filter analysis.The AirBeam2 is better suited for environmental exposure measurements rather than occupational measurements.Particle sizing by the GRIMM Mini-WRAS 1371 and the OPC-N3 show many aerosols that agricultural workers are exposed to follow a bimodal curve and are above 0.1 µm, thereby the respirator used as personal protective equipment is effective in filtering out aerosols in this occupation.Abstract. Prolonged exposure to dust has been shown to have adverse health effects in agricultural workers, primarily with the development of respiratory diseases. Low-cost sensors may be cost-effective tools for farmers to determine when they are exposed to harmful levels of dust during their workday. The purpose of this study was to identify low-cost sensors that may be reliably used in occupational settings to help workers and employers identify respirable particle matter exposure. The study utilized two different low-cost optical particle counters (OPCs) to collect data on dust exposure, which were worn on a belt by the participant: the OPC-N3 developed by Alphasense and the AirBeam2 developed by HabitatMap. Additionally, an AirChek TOUCH air sampling pump fit with a respirable dust aluminum cyclone allowed for the collection of respirable particulate matter (PM4) to determine the true concentration of exposure. Results show that the PM4 measurements made by the OPC-N3 are similar to the gravimetrical filter measurement at concentrations of < 50 µg/m3. In addition, the data analysis suggests that the AirBeam2 may be significantly underestimating the amount of particulate matter that farmworkers are exposed to and therefore may not be suitable for occupational exposure measurements compared to the OPC-N3. Keywords: Aerosols, Agriculture, AirBeam2, Dust, Exposure, Low-cost, Occupational, Optical particle counter, OPC-N3.

2019 ◽  
Author(s):  
Brandin Grindstaff ◽  
Makenzie E. Mabry ◽  
Paul D. Blischak ◽  
Micheal Quinn ◽  
J. Chris Pires

ABSTRACTPremise of the study: Environmentally controlled facilities, such as growth chambers, are essential tools for experimental research. Automated remote monitoring of such facilities with low-cost hardware can greatly improve both the reproducibility and the accurate maintenance of their conditions.Methods and Results: Using a Raspberry Pi computer, open-source software, environmental sensors, and a camera, we developed a cost-effective system for monitoring growth chamber conditions, which we have called ‘GMpi.’ Coupled with our software, GMpi_Pack, our setup automates sensor readings, photography, alerts when conditions fall out of range, and data transfer to cloud storage services.Conclusions: The GMpi offers low-cost access to environmental data logging, improving reproducibility of experiments, as well as reinforcing the stability of controlled environmental facilities. The device is also flexible and scalable, allowing customization and expansion to include other features such as machine vision.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Florentin M. J. Bulot ◽  
Steven J. Johnston ◽  
Philip J. Basford ◽  
Natasha H. C. Easton ◽  
Mihaela Apetroaie-Cristea ◽  
...  

Abstract Exposure to ambient particulate matter (PM) air pollution is a leading risk factor for morbidity and mortality, associated with up to 8.9 million deaths/year worldwide. Measurement of personal exposure to PM is hindered by poor spatial resolution of monitoring networks. Low-cost PM sensors may improve monitoring resolution in a cost-effective manner but there are doubts regarding data reliability. PM sensor boxes were constructed using four low-cost PM micro-sensor models. Three boxes were deployed at each of two schools in Southampton, UK, for around one year and sensor performance was analysed. Comparison of sensor readings with a nearby background station showed moderate to good correlation (0.61 < r < 0.88, p < 0.0001), but indicated that low-cost sensor performance varies with different PM sources and background concentrations, and to a lesser extent relative humidity and temperature. This may have implications for their potential use in different locations. Data also indicates that these sensors can track short-lived events of pollution, especially in conjunction with wind data. We conclude that, with appropriate consideration of potential confounding factors, low-cost PM sensors may be suitable for PM monitoring where reference-standard equipment is not available or feasible, and that they may be useful in studying spatially localised airborne PM concentrations.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3960
Author(s):  
Janani Venkatraman Jagatha ◽  
André Klausnitzer ◽  
Miriam Chacón-Mateos ◽  
Bernd Laquai ◽  
Evert Nieuwkoop ◽  
...  

Over the last decade, manufacturers have come forth with cost-effective sensors for measuring ambient and indoor particulate matter concentration. What these sensors make up for in cost efficiency, they lack in reliability of the measured data due to their sensitivities to temperature and relative humidity. These weaknesses are especially evident when it comes to portable or mobile measurement setups. In recent years many studies have been conducted to assess the possibilities and limitations of these sensors, however mostly restricted to stationary measurements. This study reviews the published literature until 2020 on cost-effective sensors, summarizes the recommendations of experts in the field based on their experiences, and outlines the quantile-mapping methodology to calibrate low-cost sensors in mobile applications. Compared to the commonly used linear regression method, quantile mapping retains the spatial characteristics of the measurements, although a common correction factor cannot be determined. We conclude that quantile mapping can be a useful calibration methodology for mobile measurements given a well-elaborated measurement plan assures providing the necessary data.


2017 ◽  
Author(s):  
Sarab S. Sethi ◽  
Robert M. Ewers ◽  
Nick S. Jones ◽  
C. David L. Orme ◽  
Lorenzo Picinali

AbstractAutomated methods of monitoring ecosystems provide a cost-effective way to track changes in natural system’s dynamics across temporal and spatial scales. However, methods of recording and storing data captured from the field still require significant manual effort.Here we introduce an open source, inexpensive, fully autonomous ecosystem monitoring unit for capturing and remotely transmitting continuous data streams from field sites over long time-periods. We provide a modular software framework for deploying various sensors, together with implementations to demonstrate proof of concept for continuous audio monitoring and time-lapse photography.We show how our system can outperform comparable technologies for fractions of the cost, provided a local mobile network link is available. The system is robust to unreliable network signals and has been shown to function in extreme environmental conditions, such as in the tropical rainforests of Sabah, Borneo.We provide full details on how to assemble the hardware, and the open-source software. Paired with appropriate automated analysis techniques, this system could provide spatially dense, near real-time, continuous insights into ecosystem and biodiversity dynamics at a low cost.


Author(s):  
Sander Ruiter ◽  
Eelco Kuijpers ◽  
John Saunders ◽  
John Snawder ◽  
Nick Warren ◽  
...  

(1) Background: Small, lightweight, low-cost optical particulate matter (PM) monitors are becoming popular in the field of occupational exposure monitoring, because these devices allow for real-time static measurements to be collected at multiple locations throughout a work site as well as being used as wearables providing personal exposure estimates. Prior to deployment, devices should be evaluated to optimize and quantify measurement accuracy. However, this can turn out to be difficult, as no standardized methods are yet available and different deployments may require different evaluation procedures. To gain insight in the relevance of different variables that may affect the monitor readings, six PM monitors were selected based on current availability and evaluated in the laboratory; (2) Methods: Existing strategies that were judged appropriate for the evaluation of PM monitors were reviewed and seven evaluation variables were selected, namely the type of dust, within- and between-device variations, nature of the power supply, temperature, relative humidity, and exposure pattern (peak and constant). Each variable was tested and analyzed individually and, if found to affect the readings significantly, included in a final correction model specific to each monitor. Finally, the accuracy for each monitor after correction was calculated; (3) Results: The reference materials and exposure patterns were found to be main factors needing correction for most monitors. One PM monitor was found to be sufficiently accurate at concentrations up to 2000 µg/m3 PM2.5, with other monitors appropriate at lower concentrations. The average accuracy increased by up to three-fold compared to when the correction model did not include evaluation variables; (4) Conclusions: Laboratory evaluation and readings correction can greatly increase the accuracy of PM monitors and set boundaries for appropriate use. However, this requires identifying the relevant evaluation variables, which are heavily reliant on how the monitors are used in the workplace. This, together with the lack of current consensus on standardized procedures, shows the need for harmonized PM monitor evaluation methods for occupational exposure monitoring.


2021 ◽  
Vol 13 (14) ◽  
pp. 7797
Author(s):  
Muhammad Khan ◽  
Numan Khan ◽  
Miroslaw J. Skibniewski ◽  
Chansik Park

Dust generation is generally considered a natural process in construction sites; ergo, workers are exposed to health issues due to fine dust exposure during construction work. The primary activities in the execution of construction work, such as indoor concrete and mortar mixing, are investigated to interrogate and understand the critical high particulate matter concentrations and thus health threats. Two low-cost dust sensors (Sharp GP2Y1014AU0F and Alphasense OPC N2) without implementing control measures to explicitly evaluate, compare and gauge them for these construction activities were utilized. The mean exposures to PM10, PM2.5 and PM1 during both activities were 3522.62, 236.46 and 47.62 µg/m3 and 6762.72, 471.30 and 59.09 µg/m3, respectively. The results show that PM10 and PM2.5 caused during the concrete mixing activity was approximately double compared to the mortar. The Latin Hypercube Sampling method is used to analyze the measurement results and to predict the exposure concentrations. The high dust emission and exposure from mixing activities fail to meet the World Health Organization and Health and Safety Commission standards for environmental exposure. These findings will leverage the integration of low-cost dust sensors with Building Information Modelling (BIM) to formulate a digital twin for automated dust control techniques in the construction site.


Author(s):  
Tanwi Singh ◽  
Anshuman Sinha

The major risk associated with low platelet count in pregnancy is the increased risk of bleeding during the childbirth or post that. There is an increased blood supply to the uterus during pregnancy and the surgical procedure requires cutting of major blood vessels. Women with thrombocytopenia are at increased risk of losing excessive blood. The risk is more in case of caesarean delivery as compared to vaginal delivery. Hence based on above findings the present study was planned for Assessment of the Platelet Count in the Pregnant Women in IGIMS, Patna, Bihar. The present study was planned in Department of Pathology, Indira Gandhi Institute of Medical Science, Patna, Bihar, India. The present study was planned from duration of January 2019 to June 2019. In the present study 200 pregnant females samples received for the platelet estimation were enrolled in the present study. Clinically platelet indices can be a useful screening test for early identification of preeclampsia and eclampsia. Also platelet indices can assess the prognosis of this disease in pregnant women and can be used as an effective prognostic marker because it correlates with severity of the disease. Platelet count is a simple, low cost, and rapid routine screening test. Hence the data generated from the present study concludes that platelet count can be used as a simple and cost effective tool to monitor the progression of preeclampsia, thereby preventing complications to develop during the gestational period. Keywords: Platelet Count, Pregnant Women, IGIMS, Patna, Bihar, etc.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


Sign in / Sign up

Export Citation Format

Share Document