Modeling Cotton Module Builder and Loader to Enhance Biomass Testing

2021 ◽  
Vol 37 (5) ◽  
pp. 911-928
Author(s):  
Alvin. R Womac ◽  
Erin  E. Byers ◽  
Kimberly  G. Thomas ◽  
Boone   Hillenbrand ◽  
Andrew   Smith ◽  
...  

HighlightsPhysical models of module builder and module loader were developed to enhance biomass testing with reduced mass and volume of biomass.Models used dimensional analysis, Pi Terms, and engineering factors and emphasis on reduced module upsetting and disturbance.Some engineering terms such as tamping face pressure and velocity, and particle size were not scaled to reduce biological-material distortions.Switchgrass bulk density at 8% wet basis for prototype and model were 115 and 80 kg m-3, respectively.Abstract. The objective was to design and implement separate models of a first-generation cotton module builder and a module loader that facilitated tamping quasi-confined biomass and the minimal disturbances of modules during emptying from the builder and during loader operations including unloading. The 122-cm long model, compared to 978-cm long prototype, reduced the mass of module contents required for testing from 6188 to 44 kg, or by a factor of 141:1. The tamping process was emphasized with constant tamper pressure of 76.6 kPa applied to module contents for prototype and model. Consistent properties such as SG characteristic length were also held constant among module sizes to reduce the complications of introducing un-anticipated biological-material distortions. Similarities in design aspects beyond dimensional analysis were emphasized to reduce inadvertent module upset and disturbance. Hydraulics ensured uniform tamping and lifting. An efficient module box for the model resembled the prototype-scale commercial unit with z-shaped ribs and upward-tapered module sides. Seed cotton [8% moisture wet basis (w.b.)] bulk densities for prototype and model were 166 and 107 kg m-3, respectively. Bulk densities for switchgrass (8% w.b.) prototype and model were 115 and 81 kg m-3, respectively. Reduced bulk density of models was attributed to essentially no external confinement stresses being applied to modules at rest resulting in only self-imposed confinement stresses due to module content over-burden. However, unconfined modules may have a role in handling biomass for reduced distances. Also related to minimizing module upsetting, module loading emphasized the counter-motions of advancing the loader versus the conveyor motion in the opposite direction, all driven with an electric motor. Module stability during loading was attributed to a self-imposed normal stress of module weight acting downward onto a horizontal plane of the module. The fixed loading angle of 15° and material bulk properties were held constant between prototype and model. Dependent variable for the module loader was normal stress for module stability. Normal stresses resulting from seed cotton at 8% moisture content (wet basis) were 4.754 and 0.637 kPa, respectively. Normal stresses for chopped SG at 8% moisture content (wet basis) were 3.302 and 0.484 kPa, respectively. Biomass modules would not be as stable as cotton modules based on normal stress, and due to lack of intermeshing cotton fibers. Results of loading and unloading a dozen SG model modules resulted in one module failure due to upset, and that was attributed to a 2-layer fill versus 3-layer fill for that one module. Keywords:

2021 ◽  
Vol 64 (4) ◽  
pp. 1373-1379
Author(s):  
Samir Trabelsi

HighlightsMoisture and water activity were determined nondestructively and in real time from measurement of dielectric properties.Moisture and water activity calibration equations were established in terms of the dielectric properties.Situations in which bulk density was known or unknown were considered.SEC ranged from 0.41% to 0.68% for moisture and from 0.02 to 0.04 for water activity.Abstract. A method for rapid and nondestructive determination of moisture content and water activity of granular and particulate materials was developed. The method relies on measurement of the dielectric constant and dielectric loss factor at a single microwave frequency. For the purpose of illustration, the method was applied to predicting the moisture content and water activity of almond kernels. A free-space transmission technique was used for accurate measurement of the dielectric properties. Samples of Bute Padre almond kernels with moisture content ranging from 4.8% to 16.5%, wet basis (w.b.), and water activity ranging from 0.50 to 0.93 were loaded into a Styrofoam sample holder and placed between two horn-lens antennas connected to a vector network analyzer. The dielectric properties were calculated from measurement of the attenuation and phase shift at 8 GHz and 25°C. The dielectric properties increased linearly with moisture content, while they showed an exponential increase with water activity. Situations in which the bulk density was known and unknown were considered. Linear and exponential growth regressions provided equations correlating the dielectric properties with moisture content and water activity with coefficients of determination (r2) higher than 0.96. Analytical expressions of moisture content and water activity in terms of the dielectric properties measured at 8 GHz and 25°C are provided. The standard error of calibration (SEC) was calculated for each calibration equation. Results show that moisture content can be predicted with SECs ranging from 0.41% to 0.68% (w.b.) and water activity with SECs ranging from 0.02 to 0.04 for almond kernel samples with water activity ranging from 0.5 to 0.9 and moisture contents ranging from 4.8% to 16.5% (w.b.). Keywords: Bulk density, Dielectric constant, Dielectric loss factor, Free-space measurements, Loss tangent, Microwave frequencies, Moisture content, Water activity.


2021 ◽  
Vol 37 (3) ◽  
pp. 491-494
Author(s):  
Jonathan Chiputula ◽  
Emmanuel Ajayi ◽  
Ray Bucklin ◽  
Ann R Blount

HighlightsRye grain compaction was measured for three different moisture contents (8%, 12%, and 16% wet basis) at five different compaction pressures (7, 14, 34, and 55 kPa)Bulk densities were found to be statistically significantly dependent (p < 0.0001) on both the moisture content and applied pressure.Compacted bulk densities increased with increasing applied pressure for all moisture contents.Abstract. Bulk density of agricultural grains is needed to determine the quantity of grain in storage structures and to calculate grain pressures. The objective of this study was to investigate the effects of moisture content and applied pressure on bulk density of rye grain at moisture contents and pressures typical of those seen in storage structures. Rye compaction was measured for three moisture contents (8%, 12%, and 16% wet basis) at four compaction pressures (7, 14, 34, and 55 kPa) using a square box (based on the design used by Thompson and Ross, 1983). Data from the compaction tests were used to calculate the bulk densities for the three moisture contents and four compaction pressures. The bulk densities were found to be significantly dependent (p <0.0001) both on moisture contents and the pressure applied. Bulk densities varied with increasing moisture content as has been observed in similar studies for rye and other agricultural grains such as wheat and soybeans. These results provide guidance for estimating bulk density of rye in bins and other storage structures. Keywords: Grain compaction, Grain storage, Kernel rearrangement, Kernel elasticity.


2021 ◽  
Vol 64 (2) ◽  
pp. 353-363
Author(s):  
Femi P. Alege ◽  
Gilbert J. Miito ◽  
Lisa W. DeVetter ◽  
Haiying Tao ◽  
Pius M. Ndegwa

HighlightsNutrient contents and unit density were positively correlated with canola meal blending ratio.Pellet durability, bulk density, and length were inversely correlated with canola meal blending ratio.Pellets produced from compost and 20% canola meal blend were 67% denser than the compost.Pelleting dairy manure and canola meal blends improved nutrient transport and storage.Abstract. The potential for adverse environmental impacts from excess manure nutrients generated in regions with large concentrations of animal production is enormous and real. The goal of this research was to investigate ways of alleviating such threats via pelleting and blending of excess dairy manure nutrients to enhance their value, utilization, transport, and storage. In this study, composted dairy manure was blended with canola meal in ratios ranging from 0% to 40% canola meal prior to pelleting. The pre-pelleting moisture content was set at 21% (wet basis) and an 8 mm diameter die was selected for pelleting, based on previous studies. The effect of canola blending ratio was evaluated against moisture content, unit and bulk densities, recovery, durability, and nutrient concentrations (total nitrogen and phosphate) of the resulting pellets. Results indicated positive correlations between the blending ratio and pellet recovery (r = 0.83), moisture content (r = 0.75), unit density (r = 0.74), total nitrogen (r = 0.99), and phosphate (r = 0.87). In contrast, inverse correlations were observed between the blending ratio and pellet durability (r = -0.93), bulk density (r = -0.99), and length (r = -0.76). No significant differences were observed between the blending ratio and all these parameters for blending ratios of 0% to 15%. However, data indicated significant differences between pellet durability and recovery at blending ratios above 20%. Overall, this study showed that blending dairy manure with up to 15% canola meal significantly (p < 001) improved the nutrient value, storage, and transport. Keywords: Blending, Dairy manure, Durability, Environmental pollution, Pelleting.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2487
Author(s):  
Geeta Pokhrel ◽  
Yousoo Han ◽  
Douglas J. Gardner

The generation of secondary processing mill residues from wood processing facilities is extensive in the United States. Wood flour can be manufactured utilizing these residues and an important application of wood flour is as a filler in the wood–plastic composites (WPCs). Scientific research on wood flour production from mill residues is limited. One of the greatest costs involved in the supply chain of WPCs manufacturing is the transportation cost. Wood flour, constrained by low bulk densities, is commonly transported by truck trailers without attaining allowable weight limits. Because of this, shipping costs often exceed the material costs, consequently increasing raw material costs for WPC manufacturers and the price of finished products. A bulk density study of wood flour (190–220 kg/m3) and wood pellets (700–750 kg/m3) shows that a tractor-trailer can carry more than three times the weight of pellets compared to flour. Thus, this study focuses on exploring the utilization of mill residues from four wood species in Maine to produce raw materials for manufacturing WPCs. Two types of raw materials for the manufacture of WPCs, i.e., wood flour and wood pellets, were produced and a study of their properties was performed. At the species level, red maple 40-mesh wood flour had the highest bulk density and lowest moisture content. Spruce-fir wood flour particles were the finest (dgw of 0.18 mm). For all species, the 18–40 wood flour mesh size possessed the highest aspect ratio. Similarly, on average, wood pellets manufactured from 40-mesh particles had a lower moisture content, higher bulk density, and better durability than the pellets from unsieved wood flour. Red maple pellets had the lowest moisture content (0.12%) and the highest bulk density (738 kg/m3). The results concluded that the processing of residues into wood flour and then into pellets reduced the moisture content by 76.8% and increased the bulk density by 747%. These material property parameters are an important attempt to provide information that can facilitate the more cost-efficient transport of wood residue feedstocks over longer distances.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 223
Author(s):  
Grzegorz Trzciński ◽  
Łukasz Tymendorf ◽  
Paweł Kozakiewicz

Transport of wood biomass is one of the key operations in forestry and in the wood industry. An important part is the transport of shredded wood, where the most common forms are chips and sawdust. The aim of the research was to present the variability of the total weight of trucks (gross vehicle weight, GVW), the weight of the empty trucks (tare), and loads of chips and sawdust in different periods of the year. Changes in specific parameters were analyzed: GVW; tare weight; trailer capacity; use of the trailer load capacity; bulk volume and bulk density of wood biomass loads; solid cubic meter (m3) and weight of 1m3 of the load; and load weight depending on the season, with simultaneous measurements of wood chips and sawdust moisture. More than 250 transports from four seasons of the year were analyzed in the research. It was found that the total weight of trucks (GVW) was at a comparable level, on average from 39.42 to 39.64 Mg with slight differences (with SD 0.29 and 0.39). The weight of empty trucks was 16.15 Mg for chip-bearing trucks and 15.93 Mg for sawdust-bearing trucks (with SD 0.604 and 0.526). The type of wood material has an influence on the transported volume. The average quantity of load in the bulk cubic meter was 64.783 m3 for wood chips (SD 3.127) and 70.465 m3 (SD 2.516) for sawdust. Over 30% differences in the volume of transported wood chips and approximately 18% for sawdust were observed. The use of the loading capacity of the trailer was on average 72.58% (SD 5.567) for the transport of wood chips and 77.42% (SD 3.019) for the transport of sawdust. The sawdust bulk density was from 0.3050 to 0.4265 Mg⋅m−3 for wood chips and 0.3200 to 0.3556 Mg⋅m−3 for sawdust. This parameter is significantly dependent on moisture content, and the determined correlation functions can be used for estimating and predicting bulk density. The abovementioned absolute moisture content of chips and sawdust also depends on the season, which also affects the selected parameters of wood biomass loads.


Author(s):  
Henki Ødegaard ◽  
Bjørn Nilsen

AbstractTo avoid hydraulic failure of unlined pressure tunnels, knowledge of minimum principal stress is needed. Such knowledge is only obtainable from in situ measurements, which are often time-consuming and relatively costly, effectively limiting the number of measurements typically performed. In an effort to enable more stress measurements, the authors propose a simplified and cost-effective stress measuring method; the Rapid Step-Rate Test (RSRT), which is based on existing hydraulic testing methods. To investigate the ability of this test to measure fracture normal stresses in field-like conditions, a true triaxial laboratory test rig has been developed. Hydraulic jacking experiments performed on four granite specimens, each containing a fracture, have been performed. Interpretation of pressure-, flow- and acoustic emission (AE) data has been used to interpret fracture behaviour and to assess fracture normal stresses. Our experimental data suggest that the proposed test method, to a satisfactory degree of reliability, can measure the magnitude of fracture normal stress. In addition, a clear correlation has been found between fracture closure and sudden increase in AE rate, suggesting that AE monitoring during testing can serve as a useful addition to the test. The rapid step-rate test is also considered relevant for field-scale measurements, with only minor adaptions. Our findings suggest that the RSRT can represent a way to get closer to the ideal of performing more testing along the entire length of pressure tunnel, and not only at key locations, which requires interpolation of stress data with varying degree of validity.


2016 ◽  
Vol 824 ◽  
pp. 100-107 ◽  
Author(s):  
Alena Struhárová

Bulk density and moisture content are factors that significantly affect the physical properties of autoclaved aerated concrete (AAC) including thermal conductivity and other thermo-technical characteristics. This article shows the results of measurements of compressive strength, capillary absorption, water absorption and porosity of AAC (ash on fluidized fly ash) at different bulk density and also the results of thermal conductivity of AAC at different bulk density and variable moisture content of the material. The thermo-technical properties were measured using the Isomet 2104, a portable measuring device. Acquired results demonstrate dependence of physical properties including thermal conductivity of AAC on bulk density and moisture content. The reliability and accuracy of the method of measuring was also shown.


2010 ◽  
Vol 47 (10) ◽  
pp. 1112-1126 ◽  
Author(s):  
Md. Akhtar Hossain ◽  
Jian-Hua Yin

Shear strength and dilative characteristics of a re-compacted completely decomposed granite (CDG) soil are studied by performing a series of single-stage consolidated drained direct shear tests under different matric suctions and net normal stresses. The axis-translation technique is applied to control the pore-water and pore-air pressures. A soil-water retention curve (SWRC) is obtained for the CDG soil from the equilibrium water content corresponding to each applied matric suction value for zero net normal stress using a modified direct shear apparatus. Shear strength increases with matric suction and net normal stress, and the failure envelope is observed to be linear. The apparent angle of internal friction and cohesion intercept increase with matric suction. A greater dilation angle is found at higher suctions with lower net normal stresses, while lower or zero dilation angles are observed under higher net normal stresses with lower suctions, also at a saturated condition. Experimental shear strength data are compared with the analytical shear strength results obtained from a previously modified model considering the SWRC, effective shear strength parameters, and analytical dilation angles. The experimental shear strength data are slightly higher than the analytical results under higher net normal stresses in a higher suction range.


2021 ◽  
pp. 57-65
Author(s):  
Dhinar Patliani ◽  
Dian Purbasari

Turmeric (Curcuma longa L) in Indonesia is widely known as a herbal medicinal plant, food coloring, and food flavoring. The high water content of turmeric will shorten the storage time and the quality of the ingredients. The need for drying which is the process of removing the moisture content of the material with the aim of prolonging the shelf life. The use of the foam-mat drying method with the addition of adhesives aims to speed up the drying process and maintain the quality of a material. The result of drying turmeric obtained is turmeric powder product. This study used a completely randomized design (CRD) with two factors, namely the variation of the microwave oven power and the composition of the developer agent (ovalet). The research procedure was divided into two stages, namely the manufacture of powder and continued with the measurement of physical quality. The stages of making powder begin with the preparation of raw materials, stripping, size reduction, addition of developer, drying, then grinding. The second stage is measuring physical quality, namely fineness modulus, average grain size, powder moisture content, color, water absorption, oil absorption, and bulk density. The power variations used are 420 watts, 535 watts, and 680 watts, while the composition of the developer is 1%, 2%, and 4%. Data analysis using two-way ANOVA statistical test with two factors that affect the variation of power and composition of the developer (ovalet). FM values ​​ranged from 0.364 – 1.576, D values ​​ranged from 0.005 – 0.0012 mm, final moisture content values ​​ranged from 7.60 – 9.59%, powder moisture content values ​​ranged from 9.47 – 11.43%ww , L values ​​ranged from 61.46 – 65.96, a values ​​ranged from 13.54 – 16.05, b values ​​ranged from 48.21 – 52.42, DSA values ​​ranged from 2.78 – 3.54 ml/ g, DSM values ​​ranged from 1.22 – 1.60 ml/g, and DC values ​​ranged from 0.38 – 0.44 g/cm3. The combination treatment of drying power with developer is influenced by the drying power of the parameters, namely the value of moisture content, fineness modulus, average grain size, brightness level, redness level, yellowness level, oil absorption, water absorption, and bulk density. While the developer affects the finenes modulus, average grain size, yellowness level, and bulk density.


Sign in / Sign up

Export Citation Format

Share Document