Clinical Score and Machine Learning-Based Model to Predict Diagnosis of Primary Aldosteronism in Arterial Hypertension

Hypertension ◽  
2021 ◽  
Vol 78 (5) ◽  
pp. 1595-1604
Author(s):  
Fabrizio Buffolo ◽  
Jacopo Burrello ◽  
Alessio Burrello ◽  
Daniel Heinrich ◽  
Christian Adolf ◽  
...  

Primary aldosteronism (PA) is the cause of arterial hypertension in 4% to 6% of patients, and 30% of patients with PA are affected by unilateral and surgically curable forms. Current guidelines recommend screening for PA ≈50% of patients with hypertension on the basis of individual factors, while some experts suggest screening all patients with hypertension. To define the risk of PA and tailor the diagnostic workup to the individual risk of each patient, we developed a conventional scoring system and supervised machine learning algorithms using a retrospective cohort of 4059 patients with hypertension. On the basis of 6 widely available parameters, we developed a numerical score and 308 machine learning-based models, selecting the one with the highest diagnostic performance. After validation, we obtained high predictive performance with our score (optimized sensitivity of 90.7% for PA and 92.3% for unilateral PA [UPA]). The machine learning-based model provided the highest performance, with an area under the curve of 0.834 for PA and 0.905 for diagnosis of UPA, with optimized sensitivity of 96.6% for PA, and 100.0% for UPA, at validation. The application of the predicting tools allowed the identification of a subgroup of patients with very low risk of PA (0.6% for both models) and null probability of having UPA. In conclusion, this score and the machine learning algorithm can accurately predict the individual pretest probability of PA in patients with hypertension and circumvent screening in up to 32.7% of patients using a machine learning-based model, without omitting patients with surgically curable UPA.

2021 ◽  
Author(s):  
Kshitij Jadhav ◽  
Benjamin Boury-Jamot ◽  
Veronique Deroche-Gamonet ◽  
David Belin ◽  
Benjamin Boutrel

Background: The transition from controlled to compulsive drug use occurs in a small proportion of individuals characterizing substance use disorder (SUD). The "3-Criteria" model developed on the operationalization of key DSM diagnostic criteria of SUD has helped to shed light on behavioural and biological factors involved in these divergent trajectories. However, the classification strategy on which the model has hitherto relied puts as much weight on the cohort to which the individual belongs as on their own characteristics, thereby limiting its construct validity with regards to the individual-based diagnostic approach in humans. Methods: Large datasets resulting from the combination of behavioral data from several of our previous studies on addiction-like behavior for cocaine or alcohol were fed to a variety of machine learning algorithms (each consisting of an unsupervised clustering method combined with a supervised machine learning algorithm) in order to develop a classifier that identifies resilient and vulnerable rats with high precision and reproducibility irrespective of the cohort to which they belong. Results: A classifier based on K-median or K-mean clustering (for cocaine or alcohol, respectively) followed by Artificial Neural Networks emerged as the best tool reliably and accurately to predict if a single rat is vulnerable or resilient to addiction as operationalized in the 3-Criteria model. Thus, all the rats previously characterized as 0 or 3crit in individual cohorts were correctly labelled as Resilient or Vulnerable, respectively, by this classifier. Conclusion: The present machine learning-based classifier objectively labels single individuals as resilient or vulnerable to develop addiction-like behaviour in multisymptomatic preclinical models of cocaine or alcohol addiction in rats, thereby increasing their heuristic value with regards to the human situation.


2021 ◽  
Author(s):  
Marian Popescu ◽  
Rebecca Head ◽  
Tim Ferriday ◽  
Kate Evans ◽  
Jose Montero ◽  
...  

Abstract This paper presents advancements in machine learning and cloud deployment that enable rapid and accurate automated lithology interpretation. A supervised machine learning technique is described that enables rapid, consistent, and accurate lithology prediction alongside quantitative uncertainty from large wireline or logging-while-drilling (LWD) datasets. To leverage supervised machine learning, a team of geoscientists and petrophysicists made detailed lithology interpretations of wells to generate a comprehensive training dataset. Lithology interpretations were based on applying determinist cross-plotting by utilizing and combining various raw logs. This training dataset was used to develop a model and test a machine learning pipeline. The pipeline was applied to a dataset previously unseen by the algorithm, to predict lithology. A quality checking process was performed by a petrophysicist to validate new predictions delivered by the pipeline against human interpretations. Confidence in the interpretations was assessed in two ways. The prior probability was calculated, a measure of confidence in the input data being recognized by the model. Posterior probability was calculated, which quantifies the likelihood that a specified depth interval comprises a given lithology. The supervised machine learning algorithm ensured that the wells were interpreted consistently by removing interpreter biases and inconsistencies. The scalability of cloud computing enabled a large log dataset to be interpreted rapidly; >100 wells were interpreted consistently in five minutes, yielding >70% lithological match to the human petrophysical interpretation. Supervised machine learning methods have strong potential for classifying lithology from log data because: 1) they can automatically define complex, non-parametric, multi-variate relationships across several input logs; and 2) they allow classifications to be quantified confidently. Furthermore, this approach captured the knowledge and nuances of an interpreter's decisions by training the algorithm using human-interpreted labels. In the hydrocarbon industry, the quantity of generated data is predicted to increase by >300% between 2018 and 2023 (IDC, Worldwide Global DataSphere Forecast, 2019–2023). Additionally, the industry holds vast legacy data. This supervised machine learning approach can unlock the potential of some of these datasets by providing consistent lithology interpretations rapidly, allowing resources to be used more effectively.


Author(s):  
Kazuko Fuchi ◽  
Eric M. Wolf ◽  
David S. Makhija ◽  
Nathan A. Wukie ◽  
Christopher R. Schrock ◽  
...  

Abstract A machine learning algorithm that performs multifidelity domain decomposition is introduced. While the design of complex systems can be facilitated by numerical simulations, the determination of appropriate physics couplings and levels of model fidelity can be challenging. The proposed method automatically divides the computational domain into subregions and assigns required fidelity level, using a small number of high fidelity simulations to generate training data and low fidelity solutions as input data. Unsupervised and supervised machine learning algorithms are used to correlate features from low fidelity solutions to fidelity assignment. The effectiveness of the method is demonstrated in a problem of viscous fluid flow around a cylinder at Re ≈ 20. Ling et al. built physics-informed invariance and symmetry properties into machine learning models and demonstrated improved model generalizability. Along these lines, we avoid using problem dependent features such as coordinates of sample points, object geometry or flow conditions as explicit inputs to the machine learning model. Use of pointwise flow features generates large data sets from only one or two high fidelity simulations, and the fidelity predictor model achieved 99.5% accuracy at training points. The trained model was shown to be capable of predicting a fidelity map for a problem with an altered cylinder radius. A significant improvement in the prediction performance was seen when inputs are expanded to include multiscale features that incorporate neighborhood information.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1557 ◽  
Author(s):  
Ilaria Conforti ◽  
Ilaria Mileti ◽  
Zaccaria Del Prete ◽  
Eduardo Palermo

Ergonomics evaluation through measurements of biomechanical parameters in real time has a great potential in reducing non-fatal occupational injuries, such as work-related musculoskeletal disorders. Assuming a correct posture guarantees the avoidance of high stress on the back and on the lower extremities, while an incorrect posture increases spinal stress. Here, we propose a solution for the recognition of postural patterns through wearable sensors and machine-learning algorithms fed with kinematic data. Twenty-six healthy subjects equipped with eight wireless inertial measurement units (IMUs) performed manual material handling tasks, such as lifting and releasing small loads, with two postural patterns: correctly and incorrectly. Measurements of kinematic parameters, such as the range of motion of lower limb and lumbosacral joints, along with the displacement of the trunk with respect to the pelvis, were estimated from IMU measurements through a biomechanical model. Statistical differences were found for all kinematic parameters between the correct and the incorrect postures (p < 0.01). Moreover, with the weight increase of load in the lifting task, changes in hip and trunk kinematics were observed (p < 0.01). To automatically identify the two postures, a supervised machine-learning algorithm, a support vector machine, was trained, and an accuracy of 99.4% (specificity of 100%) was reached by using the measurements of all kinematic parameters as features. Meanwhile, an accuracy of 76.9% (specificity of 76.9%) was reached by using the measurements of kinematic parameters related to the trunk body segment.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1777
Author(s):  
Muhammad Ali ◽  
Stavros Shiaeles ◽  
Gueltoum Bendiab ◽  
Bogdan Ghita

Detection and mitigation of modern malware are critical for the normal operation of an organisation. Traditional defence mechanisms are becoming increasingly ineffective due to the techniques used by attackers such as code obfuscation, metamorphism, and polymorphism, which strengthen the resilience of malware. In this context, the development of adaptive, more effective malware detection methods has been identified as an urgent requirement for protecting the IT infrastructure against such threats, and for ensuring security. In this paper, we investigate an alternative method for malware detection that is based on N-grams and machine learning. We use a dynamic analysis technique to extract an Indicator of Compromise (IOC) for malicious files, which are represented using N-grams. The paper also proposes TF-IDF as a novel alternative used to identify the most significant N-grams features for training a machine learning algorithm. Finally, the paper evaluates the proposed technique using various supervised machine-learning algorithms. The results show that Logistic Regression, with a score of 98.4%, provides the best classification accuracy when compared to the other classifiers used.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Zhang ◽  
Xia Zhe ◽  
Min Tang ◽  
Jing Zhang ◽  
Jialiang Ren ◽  
...  

Purpose. This study aimed to investigate the value of biparametric magnetic resonance imaging (bp-MRI)-based radiomics signatures for the preoperative prediction of prostate cancer (PCa) grade compared with visual assessments by radiologists based on the Prostate Imaging Reporting and Data System Version 2.1 (PI-RADS V2.1) scores of multiparametric MRI (mp-MRI). Methods. This retrospective study included 142 consecutive patients with histologically confirmed PCa who were undergoing mp-MRI before surgery. MRI images were scored and evaluated by two independent radiologists using PI-RADS V2.1. The radiomics workflow was divided into five steps: (a) image selection and segmentation, (b) feature extraction, (c) feature selection, (d) model establishment, and (e) model evaluation. Three machine learning algorithms (random forest tree (RF), logistic regression, and support vector machine (SVM)) were constructed to differentiate high-grade from low-grade PCa. Receiver operating characteristic (ROC) analysis was used to compare the machine learning-based analysis of bp-MRI radiomics models with PI-RADS V2.1. Results. In all, 8 stable radiomics features out of 804 extracted features based on T2-weighted imaging (T2WI) and ADC sequences were selected. Radiomics signatures successfully categorized high-grade and low-grade PCa cases ( P < 0.05 ) in both the training and test datasets. The radiomics model-based RF method (area under the curve, AUC: 0.982; 0.918), logistic regression (AUC: 0.886; 0.886), and SVM (AUC: 0.943; 0.913) in both the training and test cohorts had better diagnostic performance than PI-RADS V2.1 (AUC: 0.767; 0.813) when predicting PCa grade. Conclusions. The results of this clinical study indicate that machine learning-based analysis of bp-MRI radiomic models may be helpful for distinguishing high-grade and low-grade PCa that outperformed the PI-RADS V2.1 scores based on mp-MRI. The machine learning algorithm RF model was slightly better.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Aurelle Tchagna Kouanou ◽  
Thomas Mih Attia ◽  
Cyrille Feudjio ◽  
Anges Fleurio Djeumo ◽  
Adèle Ngo Mouelas ◽  
...  

Background and Objective. To mitigate the spread of the virus responsible for COVID-19, known as SARS-CoV-2, there is an urgent need for massive population testing. Due to the constant shortage of PCR (polymerase chain reaction) test reagents, which are the tests for COVID-19 by excellence, several medical centers have opted for immunological tests to look for the presence of antibodies produced against this virus. However, these tests have a high rate of false positives (positive but actually negative test results) and false negatives (negative but actually positive test results) and are therefore not always reliable. In this paper, we proposed a solution based on Data Analysis and Machine Learning to detect COVID-19 infections. Methods. Our analysis and machine learning algorithm is based on most cited two clinical datasets from the literature: one from San Raffaele Hospital Milan Italia and the other from Hospital Israelita Albert Einstein São Paulo Brasilia. The datasets were processed to select the best features that most influence the target, and it turned out that almost all of them are blood parameters. EDA (Exploratory Data Analysis) methods were applied to the datasets, and a comparative study of supervised machine learning models was done, after which the support vector machine (SVM) was selected as the one with the best performance. Results. SVM being the best performant is used as our proposed supervised machine learning algorithm. An accuracy of 99.29%, sensitivity of 92.79%, and specificity of 100% were obtained with the dataset from Kaggle (https://www.kaggle.com/einsteindata4u/covid19) after applying optimization to SVM. The same procedure and work were performed with the dataset taken from San Raffaele Hospital (https://zenodo.org/record/3886927#.YIluB5AzbMV). Once more, the SVM presented the best performance among other machine learning algorithms, and 92.86%, 93.55%, and 90.91% for accuracy, sensitivity, and specificity, respectively, were obtained. Conclusion. The obtained results, when compared with others from the literature based on these same datasets, are superior, leading us to conclude that our proposed solution is reliable for the COVID-19 diagnosis.


2021 ◽  
Author(s):  
Marc Raphael ◽  
Michael Robitaille ◽  
Jeff Byers ◽  
Joseph Christodoulides

Abstract Machine learning algorithms hold the promise of greatly improving live cell image analysis by way of (1) analyzing far more imagery than can be achieved by more traditional manual approaches and (2) by eliminating the subjective nature of researchers and diagnosticians selecting the cells or cell features to be included in the analyzed data set. Currently, however, even the most sophisticated model based or machine learning algorithms require user supervision, meaning the subjectivity problem is not removed but rather incorporated into the algorithm’s initial training steps and then repeatedly applied to the imagery. To address this roadblock, we have developed a self-supervised machine learning algorithm that recursively trains itself directly from the live cell imagery data, thus providing objective segmentation and quantification. The approach incorporates an optical flow algorithm component to self-label cell and background pixels for training, followed by the extraction of additional feature vectors for the automated generation of a cell/background classification model. Because it is self-trained, the software has no user-adjustable parameters and does not require curated training imagery. The algorithm was applied to automatically segment cells from their background for a variety of cell types and five commonly used imaging modalities - fluorescence, phase contrast, differential interference contrast (DIC), transmitted light and interference reflection microscopy (IRM). The approach is broadly applicable in that it enables completely automated cell segmentation for long-term live cell phenotyping applications, regardless of the input imagery’s optical modality, magnification or cell type.


2021 ◽  
Author(s):  
Michael C. Robitaille ◽  
Jeff M. Byers ◽  
Joseph A. Christodoulides ◽  
Marc P. Raphael

Machine learning algorithms hold the promise of greatly improving live cell image analysis by way of (1) analyzing far more imagery than can be achieved by more traditional manual approaches and (2) by eliminating the subjective nature of researchers and diagnosticians selecting the cells or cell features to be included in the analyzed data set. Currently, however, even the most sophisticated model based or machine learning algorithms require user supervision, meaning the subjectivity problem is not removed but rather incorporated into the algorithm's initial training steps and then repeatedly applied to the imagery. To address this roadblock, we have developed a self-supervised machine learning algorithm that recursively trains itself directly from the live cell imagery data, thus providing objective segmentation and quantification. The approach incorporates an optical flow algorithm component to self-label cell and background pixels for training, followed by the extraction of additional feature vectors for the automated generation of a cell/background classification model. Because it is self-trained, the software has no user-adjustable parameters and does not require curated training imagery. The algorithm was applied to automatically segment cells from their background for a variety of cell types and five commonly used imaging modalities - fluorescence, phase contrast, differential interference contrast (DIC), transmitted light and interference reflection microscopy (IRM). The approach is broadly applicable in that it enables completely automated cell segmentation for long-term live cell phenotyping applications, regardless of the input imagery's optical modality, magnification or cell type.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Soumyajyoti Biswas ◽  
David Fernandez Castellanos ◽  
Michael Zaiser

Abstract A subcritical load on a disordered material can induce creep damage. The creep rate in this case exhibits three temporal regimes viz. an initial decelerating regime followed by a steady-state regime and a stage of accelerating creep that ultimately leads to catastrophic breakdown. Due to the statistical regularities in the creep rate, the time evolution of creep rate has often been used to predict residual lifetime until catastrophic breakdown. However, in disordered samples, these efforts met with limited success. Nevertheless, it is clear that as the failure is approached, the damage become increasingly spatially correlated, and the spatio-temporal patterns of acoustic emission, which serve as a proxy for damage accumulation activity, are likely to mirror such correlations. However, due to the high dimensionality of the data and the complex nature of the correlations it is not straightforward to identify the said correlations and thereby the precursory signals of failure. Here we use supervised machine learning to estimate the remaining time to failure of samples of disordered materials. The machine learning algorithm uses as input the temporal signal provided by a mesoscale elastoplastic model for the evolution of creep damage in disordered solids. Machine learning algorithms are well-suited for assessing the proximity to failure from the time series of the acoustic emissions of sheared samples. We show that materials are relatively more predictable for higher disorder while are relatively less predictable for larger system sizes. We find that machine learning predictions, in the vast majority of cases, perform substantially better than other prediction approaches proposed in the literature.


Sign in / Sign up

Export Citation Format

Share Document