scholarly journals Modeling Cotton Growth and Yield Response to Irrigation Practices for Thermally Limited Growing Seasons in Kansas

2021 ◽  
Vol 64 (1) ◽  
pp. 1-12
Author(s):  
R. Louis Baumhardt ◽  
Lucas A. Haag ◽  
Prasanna H. Gowda ◽  
Robert C. Schwartz ◽  
Gary W. Marek ◽  
...  

HighlightsLater planting and greater site elevation or latitude decreased seasonal growing degree days and cotton yield in Kansas.Higher irrigation capacity (rate) usually increased lint yield, which was probably due to increased early boll load.Strategies for splitting land allocations between high irrigation rates and dryland did not increase production.Cotton may reduce irrigation withdrawals from the Ogallala aquifer, but the Kansas growing season limits production.Abstract. Precipitation in the western Great Plains averages about 450 mm, varying little with latitude and providing 40% to 80% of potential crop evapotranspiration (ETc). Supplemental irrigation is required to fully meet crop water demand, but the Ogallala or High Plains aquifer is essentially non-recharging south of Nebraska. Pumping water from this aquifer draws down water tables, leading to reduced water availability and deficit irrigation to produce an alternate crop such as cotton (Gossypium hirsutum L.) with a lower peak water demand than corn (Zea mays L.). Our objective was to compare simulated cotton yield response to emergence date, irrigation capacity, and application period at three western Kansas locations (Colby, Tribune, and Garden City) with varying seasonal energy or cumulative growing degree days (CGDD) and compare split center pivot deficit irrigation strategies with a fixed water supply (i.e., where portions of the center pivot land area are managed with different irrigation strategies). We used actual 1961-2000 location weather records with the GOSSYM simulation model to estimate yields of cotton planted into soil at 50% plant-available water for three emergence dates (DOY 145, 152, and 159) and all combinations of irrigation period (0, 4, 6, 8, and 10 weeks beginning at first square) and capacity (2.5, 3.75, and 5.0 mm d-1). Simulated lint yield and its ratio to ETc, or water use efficiency (WUE), consistently decreased with delayed planting (emergence) as location elevation or latitude increased due to effects on growing season CGDD. Depending on location, simulated cotton lint consistently increased (p = 0.05) for scenarios with increasing irrigation capacity, which promoted greater early season boll load, but not for durations exceeding 4 to 6 weeks, probably because later irrigation and fruiting did not complete maturation during the short growing season. Cotton WUE generally increased, with greater yields resulting from earlier emergence and early high-capacity irrigation. We calculated lower WUE where irrigation promoted vigorous growth with added fruiting forms that delayed maturation and reduced the fraction of open bolls. The irrigation strategy of focusing water at higher capacities on a portion of the center pivot in combination with the dryland balance did not increase net yields significantly at any location because the available seasonal energy limited potential crop growth and yield response to irrigation. However, the overall net lint yield was numerically larger for focused irrigation strategies at the southwest Kansas location (Garden City). Based on lint yields simulated under uniform or split center pivot deficit irrigation, we conclude that cotton is poorly suited as an alternative crop for central western and northwestern Kansas because of limited growing season CGDD. Keywords: Cotton, Crop simulation, Deficit irrigation, Evapotranspiration, Irrigation capacity, Split center pivot irrigation, Water use efficiency, Yield limiting factors.

1998 ◽  
Vol 12 (4) ◽  
pp. 590-594 ◽  
Author(s):  
Robert E. Blackshaw ◽  
K. Neil Harker

Redstem filaree is becoming widespread and abundant on the Canadian prairies. A field study was conducted to determine the growth, development, and seed yield response of redstem filaree when grown under noncropped conditions and planted at various dates throughout the growing season in Alberta. Redstem filaree emerged within 7 to 13 d of planting with an accumulated 57 to 134 growing degree days (GDD). Flowering occurred within 46 to 65 d (327 to 779 GDD) of planting. Plants that emerged in August or later did not flower in that season and survived as winter annuals. Spring-emerging redstem filaree plants matured within 79 to 100 d (729 to 1,193 GDD). Plants that emerged in May and June attained more biomass and produced threefold more seeds than plants that emerged in July or later. Redstem filaree seed production ranged from 2,400 to 9,900 seeds/plant depending on emergence date and environmental conditions. Information from this study will assist in developing integrated management strategies for this increasingly important weed.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
M. K. Singh ◽  
VINOD KUMAR ◽  
SHAMBHU PRASAD

A field experiment was carried out during the kharif of 2014 and 2015 to evaluate the yield potential, economics and thermal utilization in eleven finger millet varieties under the rainfed condition of the sub-humid environment of South Bihar of Eastern India. Results revealed that the significantly higher grain yield (20.41 q ha-1), net returns (Rs 25301) and B: C ratio (1.51) was with the finger millet variety ‘GPU 67’ but was being at par to ‘GPU28’and ‘RAU-8’, and significantly superior over remaining varieties. The highest heat units (1535.1oC day), helio-thermal units (7519.7oC day hours), phenothermal index (19.4 oC days day-1) were recorded with variety ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ and lowest in ‘VL 149’ at 50 % anthesis stage. Similarly, the highest growing degree days (2100 oC day), helio-thermal units (11035.8 oC day hours) were noted with ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ at maturity. The highest heat use efficiency (0.97 kg ha-1 oC day) and helio-thermal use efficiency (0.19 kg ha-1 oC day hour) were in ‘GPU 67’ followed by ‘VL 315’.


1976 ◽  
Vol 56 (4) ◽  
pp. 901-905 ◽  
Author(s):  
D. G. DORRELL

The effect of seeding date on the chlorogenic acid content of sunflower seed flour was determined by seeding the cultivars Krasnodarets and Peredovik at seven dates, starting on 14 May, over 3 yr. Sequential plantings were made at increments of approximately 70 growing degree days (base = 5.6 C). Plants were harvested at normal field maturity. The time and rate of deposition of chlorogenic acid was determined by harvesting plants at 7-day intervals from 21 to 49 days after flowering. The seeds were dehulled and defatted before determining the chlorogenic acid content of the flour. Chlorogenic acid content declined steadily from an average of 4.22% for the first seeding to 3.30% for the last seeding. About one-half of the total chlorogenic acid was present 21 days after flowering. Deposition continued rapidly for the next 14 days then the level began to stabilize. Delay in seeding tended to shorten the period of vegetative growth and shift the deposition of chlorogenic acid to a cooler portion of the growing season. It is suggested that a combination of these factors caused the reduction in chlorogenic acid content of sunflower flour.


1971 ◽  
Vol 49 (10) ◽  
pp. 1821-1832 ◽  
Author(s):  
Edward Sucoff

During the 1969 and 1970 growing season buds were collected almost weekly from matched trees in northeastern Minnesota. Cataphyll primordia for the year n + 1 shoot began forming at the time that internodes in the year n shoot started elongating (late April) and continued forming until early September. Primordia for axillary buds started forming about 2 months later and stopped forming at the same time as cataphylls. The size and deposition activity of the apical dome simultaneously increased during the early growing season and decreased during the late season. The maximum rates in July were over nine cataphylls per day.Rate of cataphyll deposition paralleled elongation of the needles on subtending shoots. Forty to fifty percent of the cataphylls had been formed when shoot growth was 95% complete. Although the bulk of the depositions occurred earlier in 1970, when growing degree days were used as the clock, the 2 years were similar.The results provide quantitative data to complement the histologic emphasis of previous studies.


2016 ◽  
Vol 7 (4) ◽  
pp. 23-37 ◽  
Author(s):  
Rosalyn Francine MacCracken ◽  
Paul R. Houser

This study characterizes the climate structure in the Eastern United States for suitability of winegrape growth. For this study, the Eastern US is defined as the 44 contiguous Eastern most states. This excludes the premium wine growing states of California, Washington, Oregon and Idaho. For this characterization, a comparative study is performed on the four commonly used climate-viticulture indices (i.e., Average Growing Season Temperature, Growing Degree Days, Heliothermal Index and Biologically Effective Degree Days), and a new climate-viticulture index, the Modified-GSTavg (Mod-GSTavg). This is accomplished using the 1971 – 2000 PRISM 800-meter resolution dataset of climate temperature normal for the study area of 44 states and 62 American Viticultural Areas across the Eastern United States. The results revealed that all the climate indices have similar spatial patterns throughout the US with varying magnitudes and degrees of suitability.


2012 ◽  
Vol 51 (11) ◽  
pp. 2060-2073 ◽  
Author(s):  
Kari E. Skaggs ◽  
Suat Irmak

AbstractAir temperature influences agricultural practices and production outcomes, making detailed quantifications of temperature changes necessary for potential positive and negative effects on agricultural management practices to be exploited or mitigated. Temperature trends of long-term data for five agricultural locations, ranging from the subhumid eastern to the semiarid western parts of Nebraska, were studied to determine local temperature changes and their potential effects on agricultural practices. The study quantified trends in annual and monthly average maximum and minimum air temperature (Tmax and Tmin), daily temperature range (DTR), total growing degree-days, extreme temperatures, growing‐season dates and lengths, and temperature distributions for five heavily agricultural areas of Nebraska: Alliance, Central City, Culbertson, Fremont, and Hastings. July and August were the months with the greatest decreases in Tmax for the central part of Nebraska—Culbertson, Hastings, and Central City. Alliance, Culbertson, and Fremont had year-round decreases in DTR. Central City and Hastings experienced growing‐season decreases in DTR. Increases in growing‐season length occurred at rates of 14.3, 16.7, and 11.9 days century−1 for Alliance, Central City, and Fremont, respectively. At Hastings, moderately earlier last spring frost (LS) at a rate of 6.6 days century−1 was offset by an earlier (2.7 days century−1) first fall frost (FF), resulting in only a 3.8 days century−1 longer growing season. There were only slight changes in LS and FF dates of around 2 days earlier and 1 day later per century, respectively, for Culbertson.


2009 ◽  
Vol 23 (4) ◽  
pp. 503-506 ◽  
Author(s):  
John D. Everitt ◽  
J. Wayne Keeling

Field experiments were conducted in Hale Co., TX, in 2005 and 2006 to determine the effects of 2,4-D amine and dicamba applied at varying rates and growth stages on cotton growth and yield, and to correlate cotton injury levels and lint yield reductions. Dicamba or 2,4-D amine was applied at four growth stages including cotyledon to two-leaf, four- to five-leaf, pinhead square, and early bloom. Dicamba and 2,4-D amine were applied at 1/2, 1/20, 1/200, and 1/2000 of the recommended use rate. Crop injury was recorded at 14 days after treatments and late-season, and cotton lint yields were determined. Across all growth stages, 2,4-D caused more crop injury and yield loss than dicamba. Cotton lint was reduced more by later applications (especially pinhead square) and injury underestimated yield loss with 2,4-D. Visual estimates of injury overestimated yield loss when 2,4-D or dicamba was applied early (cotyledon to two leaf) and was not a good predictor of yield loss.


1970 ◽  
Vol 40 (2) ◽  
pp. 149-153 ◽  
Author(s):  
MR Islam ◽  
S Sikder

Variations in the phenology and degree days of five fine rice cultivars viz., Rajshahi swarna, Silkumul, Kataribhog, Lal pajam and Sanla under organic and inorganic cultural conditions were studied following a split plot design. The requirement of days to attain various phenological stages was highest in Rajshahi swarna, medium in Silkumul, Kataribhog and Lal pajam and the lowest in Sanla for both the cultural conditions. The growing degree days (GDD) and heat use efficiency (HUE) were slightly higher under inorganic than organic culture because of higher life span of rice cultivars in inorganic culture. The highest GDD and HUE were found in Rajshahi swarna, whereas the lowest in Sanla. Results also showed that the requirement of days and GDD were initially higher up to maximum tillering stage under organic culture but thereafter these requirements were greater under inorganic culture for all the cultivars. The grain yield was somewhat lower in organic compared to inorganic culture. In Rajshahi highest grain yield of swarna was 2.90 and 2.74 t/ha under inorganic and organic culture, respectively. Key words: Phenology; Growing degree days; Heat use efficiency; Fine rice DOI: http://dx.doi.org/10.3329/bjb.v40i2.9770   Bangladesh J. Bot. 40(2): 149-153, 2011 (December)  


HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1712-1718 ◽  
Author(s):  
Laura L. Van Eerd ◽  
Kelsey A. O'Reilly

The increase in fertilizer costs as well as environmental concerns has stimulated growers to re-evaluate their fertilizer applications to optimize nitrogen use efficiency (NUE) while maintaining crop yields and minimizing N losses. With these objectives, field trials were conducted at seven sites with five N rates (0 to 220 kg N/ha) of ammonium-nitrate applied preplant broadcast and incorporated as well as a split application treatment of 65 + 45 kg N/ha. In three contrasting years (i.e., cool/wet versus warm/dry versus average), N treatment had no observable effect on grade size distribution or brine quality. Based on the zero N control treatment, the limited yield response to fertilizer N was the result of sufficient plant-available N over the growing season. In the N budget, there was no difference between N treatments in crop N removal, but there was a positive linear relationship between N applied and the quantity of N in crop residue as well as in the soil after harvest. As expected, apparent fertilizer N recovery and N uptake efficiency were lower at 220 versus 110 kg N/ha applied preplant or split. The preplant and split applications of 110 kg N/ha were not different in yield, overall N budget, or NUE. Considering the short growing season, planting into warm soils, and the generally productive, nonresponsive soils in the region, growers should consider reducing or eliminating fertilizer N applications in machine-harvested cucumber.


OENO One ◽  
2012 ◽  
Vol 46 (3) ◽  
pp. 149 ◽  
Author(s):  
Jon D. Anderson ◽  
Gregory V. Jones ◽  
Andrew Tait ◽  
Andrew Hall ◽  
Michael C.T. Trought

<p style="text-align: justify;"><strong>Aims</strong>: This research analyzes four climate indices derived from gridded, interpolated data to assess New Zealand’s climate structure and variation among wine regions.</p><p style="text-align: justify;"><strong>Methods and results</strong>: High resolution gridded data based on 1971-2000 climate normals was used to characterize climate indices depicting viticultural suitability in a geographic information system. The statistical properties of each index were assessed over 21 New Zealand viticulture regions. The results show predominately cool to moderately warm climate suitability in New Zealand, comparable to many European and United States regions. While many viticulture regions have one primary class of suitability, variability of climate within regions can be significant, with some regions containing two to four climate classes, making them suitable for a greater range of cultivars.</p><p style="text-align: justify;"><strong>Conclusion</strong>: While the indices depict broad patterns expected over New Zealand, both within and between region variations can be substantial among the indices. However, two indices, Growing Season Average Temperature (GST) and Growing Degree-Days (GDD), are functionally identical, but GST is easier to calculate and overcomes many methodological issues in GDD.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This research provides the basis for evaluating general suitability for viticulture in New Zealand, assists comparisons between viticulture regions in New Zealand and worldwide, and offers growers measures of assessing appropriate cultivars and sites.</p>


Sign in / Sign up

Export Citation Format

Share Document