scholarly journals Changes in Protein Expression in Two Cholangiocarcinoma Cell Lines Undergoing Formation of Multicellular Tumor Spheroids In Vitro

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0118906 ◽  
Author(s):  
Carlo Mischiati ◽  
Blendi Ura ◽  
Leda Roncoroni ◽  
Luca Elli ◽  
Carlo Cervellati ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mohammad Azharuddin ◽  
Karin Roberg ◽  
Ashis Kumar Dhara ◽  
Mayur Vilas Jain ◽  
Padraig Darcy ◽  
...  

AbstractOne of the hallmarks of cancers is their ability to develop resistance against therapeutic agents. Therefore, developing effective in vitro strategies to identify drug resistance remains of paramount importance for successful treatment. One of the ways cancer cells achieve drug resistance is through the expression of efflux pumps that actively pump drugs out of the cells. To date, several studies have investigated the potential of using 3-dimensional (3D) multicellular tumor spheroids (MCSs) to assess drug resistance; however, a unified system that uses MCSs to differentiate between multi drug resistance (MDR) and non-MDR cells does not yet exist. In the present report we describe MCSs obtained from post-diagnosed, pre-treated patient-derived (PTPD) cell lines from head and neck squamous cancer cells (HNSCC) that often develop resistance to therapy. We employed an integrated approach combining response to clinical drugs and screening cytotoxicity, monitoring real-time drug uptake, and assessing transporter activity using flow cytometry in the presence and absence of their respective specific inhibitors. The report shows a comparative response to MDR, drug efflux capability and reactive oxygen species (ROS) activity to assess the resistance profile of PTPD MCSs and two-dimensional (2D) monolayer cultures of the same set of cell lines. We show that MCSs provide a robust and reliable in vitro model to evaluate clinical relevance. Our proposed strategy can also be clinically applicable for profiling drug resistance in cancers with unknown resistance profiles, which consequently can indicate benefit from downstream therapy.


Lung Cancer ◽  
1997 ◽  
Vol 17 (1) ◽  
pp. 85-101 ◽  
Author(s):  
Shoichi Inoue ◽  
Kazuo Takaoka ◽  
Takashi Endo ◽  
Shigetaka Mizuno ◽  
Yoshihiko Ogawa ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karl Olofsson ◽  
Valentina Carannante ◽  
Madoka Takai ◽  
Björn Önfelt ◽  
Martin Wiklund

AbstractMulticellular tumor spheroids (MCTSs) can serve as in vitro models for solid tumors and have become widely used in basic cancer research and drug screening applications. The major challenges when studying MCTSs by optical microscopy are imaging and analysis due to light scattering within the 3-dimensional structure. Herein, we used an ultrasound-based MCTS culture platform, where A498 renal carcinoma MCTSs were cultured, DAPI stained, optically cleared and imaged, to connect nuclear segmentation to biological information at the single cell level. We show that DNA-content analysis can be used to classify the cell cycle state as a function of position within the MCTSs. We also used nuclear volumetric characterization to show that cells were more densely organized and perpendicularly aligned to the MCTS radius in MCTSs cultured for 96 h compared to 24 h. The method presented herein can in principle be used with any stochiometric DNA staining protocol and nuclear segmentation strategy. Since it is based on a single counter stain a large part of the fluorescence spectrum is free for other probes, allowing measurements that correlate cell cycle state and nuclear organization with e.g., protein expression or drug distribution within MCTSs.


2021 ◽  
Vol 20 ◽  
pp. 153303382098011
Author(s):  
Junjun Shu ◽  
Ling Xiao ◽  
Sanhua Yan ◽  
Boqun Fan ◽  
Xia Zou ◽  
...  

Objective: Ovarian cancer (OC) ranks one of the most prevalent fatal tumors of female genital organs. Aberrant promoter methylation triggers changes of microRNA (miR)-375 in OC. Our study aimed to evaluate the mechanism of methylated miR-375 promoter region in OC cell malignancy and to seek the possible treatment for OC. Methods: miR-375 promoter methylation level in OC tissues and cells was detected. miR-375 expression in OC tissues and cell lines was compared with that in demethylated cells. Role of miR-375 in OC progression was measured. Dual-luciferase reporter gene assay was utilized to verify the targeting relationship between miR-375 and Yes-associated protein 1 (YAP1). Then, Wnt/β-catenin pathway-related protein expression was tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results: Highly methylated miR-375 was seen in OC tissues and cell lines, while its expression was decreased as the promoter methylation increased. Demethylation in OC cells brought miR-375 back to normal level, with obviously declined cell invasion, migration and viability and improved apoptosis. Additionally, miR-375 targeted YAP1 to regulate the Wnt/β-catenin pathway protein expression. Overexpressed YAP1 reversed the protein expression, promoted cell invasion, migration and viability while reduced cell apoptosis. Overexpressed miR-375 in vivo inhibited OC progression. Conclusion: Our study demonstrated that demethylated miR-375 inhibited OC growth by targeting YAP1 and downregulating the Wnt/β-catenin pathway. This investigation may offer novel insight for OC treatment.


2016 ◽  
Vol 31 (6) ◽  
pp. 832-843 ◽  
Author(s):  
Weijing Yao ◽  
Qian Zha ◽  
Xu Cheng ◽  
Xin Wang ◽  
Jun Wang ◽  
...  

In this study, soy protein isolate was hydrolyzed by compound enzymes to give aqueous soy protein with low molecular weights. Folic acid modified and free soy protein nanoparticles were successfully prepared by a desolvation method as target-specific drug delivery, respectively. Ultraviolet spectrophotometry demonstrated that folic acid was successfully grafted onto soy protein. The shape and size of folic acid modified soy protein nanoparticles were detected by transmission electron microscopy, scanning electron microscope, and dynamic light scattering. In addition, a series of characteristics including kinetic stability, pH stability, and time stability were also performed. Doxorubicin was successfully loaded into folic acid modified soy protein nanoparticles, and the encapsulation and loading efficiencies were 96.7% and 23%, respectively. Doxorubicin-loaded folic acid modified soy protein nanoparticles exhibited faster drug release rate than soy protein nanoparticles in PBS solution (pH = 5). The tumor penetration and antitumor experiments were done using three-dimensional multicellular tumor spheroids as the in vitro model. The results proved that folic acid modified soy protein nanoparticles display higher penetration and accumulation than soy protein nanoparticles, therefore possessing efficient growth inhibitory ability against multicellular tumor spheroids.


2020 ◽  
pp. 251-268
Author(s):  
Suchit Khanna ◽  
Ankit Chauhan ◽  
Anant Narayan Bhatt ◽  
Bilikere Srinivasa Rao Dwarakanath

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1562-1562 ◽  
Author(s):  
Noor M Khaskhely ◽  
Daniela Buglio ◽  
Jessica Shafer ◽  
Catherine M. Bollard ◽  
Anas Younes

Abstract Abstract 1562 Poster Board I-585 Purpose SNDX-275 is an oral, class 1 isoform selective HDACi. Phase 1 studies in leukemia demonstrated the agent has a long half-life and that weekly or every other week dosing is sufficient for antitumor activity. Based on recent favorable in vitro and in vivo activity of several HDAC inhibitors in HL, we investigated the in vitro activity of SNDX275 in HL-derived cell lines. Methods For apoptosis and gene expression analysis 05 × 106 cells were incubated with 0.1-2 μM of SNDX-275 for 24-72 hours before they were examined for proliferation and cell death by the MTS assay and the annexin-PI and FACS analysis. For combination studies, cells were incubated with 0.1-2 uM of SNDX-275 and 1-20 nM of either gemcitabine or bortezomib for 48-72 hours. Gene and protein expression were measured by RT-PCR, western blot, and immunohistochemistry. SNDX-275 effects on a panel of 30 cytokines and chemokines was assayed on 05 × 106 cells after incubation of 48 hrs using a multiplex assay. Results SNDX-275 induced cell death in a dose and time dependent manner with an IC50 of 0.4 μM. At the molecular level, SNDX-275 increased H3 acetylation, up-regulated p21 protein expression, and activated the intrinsic apoptosis pathway by down-regulating the anti-apoptotic X-linked inhibitor or apoptosis (XIAP) protein, which was associated with activation of caspase 9 and 3. Combination studies demonstrated that SNDX-275 had synergistic effects when combined with gemcitabine and bortezomib. To further investigate the potential for SNDX-275 activity in HL we measured the effect of SNDX-275 on pathways that may contribute to an anti-tumor immune response. Dysregulated cytokine/chemokine production has been shown to contribute to HL pathology, including immune tolerance of the cancer cells. SNDX-275 increased IL12 p40-70, IP10, and RANTES, and decreased the level of IL13 and IL4, thus favoring Th1-type cytokines/chemokines. In addition, recent data has demonstrated that a variety of epigenetic-modulating drugs may up-regulate the expression of cancer testis tumor associated antigens, leading to a favorable immune response. None of the lines expressed the CTAs without induction. SNDX275 was able to induce CTA expression of SSX2 in L428 but not HDLM2 whereas MAGE-A was induced in both HL cell lines. NY-ESO expression was not induced. Conclusions Our studies demonstrate that SNDS-275 has dual effect on apoptotic and immunomodulatory pathways in HL. Furthermore, this data demonstrates that SNDX-275 may upregulate CTAs suggesting that this treatment may render the tumor more immunogeneic and susceptible to immune mediated killing with tumor-specific cytotoxic T lymphocytes. The selectivity profile of SNDX-275 also suggests that HDAC1 and 2 are the primary targets for HDAC inhibition in these cells. Phase 2 studies with SNDX-275 in HL are ongoing. Disclosures Younes: MethylGene: Honoraria, Research Funding.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15153-15153 ◽  
Author(s):  
T. Sawada ◽  
T. Okada ◽  
K. Kubota

15153 Background: In the present study, anti-neoplastic effect of rapamycin against cholangiocarcinoma was studied in vitro. Methods: Expression of mTOR in 4 cholangiocarcinoma cell lines, TFK1, HuCCT1, NOZW, and OZ was evaluated by real-time PCR. Then, the four cholangiocarcinoma cell lines were cultured with rapamycin (0, 25, 50, 100, 200 nM), gemcitabine (0, 0.5, 1, 2 μM), or both, and anti-proliferative effect was evaluated by MTT assay. Results: All the four cholangiocarcinoma cell lines expressed endogenous mTOR- mRNA. Level of expression was the highest in HuCCT1 (65.8), and the lowest in TFK1 (17.6). Then, rapamycin significantly inhibited the growth of all the four cholangiocarcinoma cell lines, in dose-dependent manner. Gemcitabine inhibited the growth of NOZW (48.4%) and HuCCT1 (48.9%), but less efficiently in TFK1 (5.9%) and OZ (27.4%). Furthermore, synergistic anti-proliferative effect of rapamycin and gemcitabine was observed in TFK1 (39.1%), NOZW (38.9%), and OZ (47.1%), not in HuCCT1 (18.9%). Conclusion: Rapamycin effectively inhibited the growth of the cholangiocarcinoma cell lines, and synergistic effect with gemcitabine was observed in three of the four cell lines. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document