scholarly journals Longitudinal SARS-CoV-2 antibody study using the Easy Check COVID-19 IgM/IgG™ lateral flow assay

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247797
Author(s):  
Renee L. Higgins ◽  
Stephen A. Rawlings ◽  
Jamie Case ◽  
Florence Y. Lee ◽  
Clarence W. Chan ◽  
...  

Since the initial identification of the novel coronavirus SARS-CoV-2 in December of 2019, researchers have raced to understand its pathogenesis and begun devising vaccine and treatment strategies. An accurate understanding of the body’s temporal immune response against SARS-CoV-2 is paramount to successful vaccine development and disease progression monitoring. To provide insight into the antibody response against SARS-CoV-2, plasma samples from 181 PCR-confirmed COVID-19 patients collected at various timepoints post-symptom onset (PSO) were tested for the presence of anti-SARS-CoV-2 IgM and IgG antibodies via lateral flow. Additionally, 21 donors were tracked over time to elucidate patient-specific immune responses. We found sustained levels of anti-SARS-CoV-2 antibodies past 130 days PSO, with 99% positivity observed at 31–60 days PSO. By 61–90 days PSO, the percentage of IgM-/IgG+ results were nearly equal to that of IgM+/IgG+ results, demonstrating a shift in the immune response with a decrease in IgM antibody levels. Results from this study not only provide evidence that the antibody response to COVID-19 can persist for over 4 months, but also demonstrates the ability of Easy Check™ to monitor seroconversion and antibody response of patients. Easy Check was sufficiently sensitive to detect antibodies in patient samples as early as 1–4 days PSO with 86% positivity observed at 5–7 days PSO. Further studies are required to determine the longevity and efficacy of anti-SARS-CoV-2 antibodies, and whether they are protective against re-infection.

Author(s):  
Jainish Patel ◽  
Prittesh Patel ◽  
Victor Akinmuyiwa

This paper explores the trends, issues and challenges confronting the successful vaccine development for the novel Coronavirus disease (COVID-19). Right from the commencement of the COVID-19 pandemic, no drugs or vaccine has been developed nor approved for treating those down with COVID-19. This year, the scientific community and the vaccine industry have been asked to respond urgently to SARS-COVID-2 pandemic. Presently numerous vaccine development platforms are under process and DNA- and RNA-based platforms showing great potential followed by recombinant-subunit vaccines. Through explorative research, it was established that companies involved in COVID-19 vaccine development are facing big challenges in the scientific, economic and logistical perspectives. Amongst these challenges are distrust, misinformation, and about understanding the immune system interaction with the vaccine being developed, as well as with the pathogen itself. Adjudged as insurmountable may be too early a conclusion. The race is on and progresses are being made. Proper understanding of trends, metrics and dynamics revolving around COVID-19 vaccine development is crucial in expanding possibilities for positive results from ongoing vaccine research. In this review, we spotlight on the most recent developments in COVID-19 vaccine, including top 10 early candidates that may hit the market in next few months.


The Analyst ◽  
2021 ◽  
Author(s):  
Linlin Zhuang ◽  
Jiansen Gong ◽  
Ming Ma ◽  
Yongxin Ji ◽  
Peilong Tian ◽  
...  

The novel coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been surging rapidly around the world, which exposes humanity to unprecedented economic, social and...


PEDIATRICS ◽  
1949 ◽  
Vol 3 (2) ◽  
pp. 208-213
Author(s):  
RAE V. NICHOLAS ◽  
WERNER HENLE

A single dose of 0.5 ml. of commercially available influenzal virus vaccine injected into children from seven weeks to three years of age produced antibodies in about 70%. Resulting antibody levels in the children, most of whom were born after the last widespread epidemics of influenza A and B, were distinctly lower than those observed in older individuals who, in all likelihood, had experienced previous contacts with influenzal antigens. Two injections at a week's interval failed to result in a better antibody response in these children in agreement with the experience gained in adults. Increase in the dose of vaccine appears unwarranted now, since the incidence of febrile reactions—all of short duration—exceeded 40%. This inferior antibody response may be the result of several factors: (a) the smaller dose of vaccine which can be safely administered to such children; (b) the possible inferior immune response of the younger individual; and (c) the absence of a basic immunity to the antigens present in most older individuals as a result of previous contacts with influenzal viruses. Although it is impossible to decide among these factors, the booster effect of restimulation with small doses of antigen is a well known phenomenon in protective measures against other infectious agents. It is felt that such a mechanism may well be the explanation for the discrepancies between young children and older individuals in their response to vaccination against influenza.


Endocrinology ◽  
2020 ◽  
Vol 161 (9) ◽  
Author(s):  
Franck Mauvais-Jarvis ◽  
Sabra L Klein ◽  
Ellis R Levin

Abstract Severe outcomes and death from the novel coronavirus disease 2019 (COVID-19) appear to be characterized by an exaggerated immune response with hypercytokinemia leading to inflammatory infiltration of the lungs and acute respiratory distress syndrome. Risk of severe COVID-19 outcomes is consistently lower in women than men worldwide, suggesting that female biological sex is instrumental in protection. This mini-review discusses the immunomodulatory and anti-inflammatory actions of high physiological concentrations of the steroids 17β-estradiol (E2) and progesterone (P4). We review how E2 and P4 favor a state of decreased innate immune inflammatory response while enhancing immune tolerance and antibody production. We discuss how the combination of E2 and P4 may improve the immune dysregulation that leads to the COVID-19 cytokine storm. It is intended to stimulate novel consideration of the biological forces that are protective in women compared to men, and to therapeutically harness these factors to mitigate COVID-19 morbidity and mortality.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 231 ◽  
Author(s):  
Firas A. Rabi ◽  
Mazhar S. Al Zoubi ◽  
Ghena A. Kasasbeh ◽  
Dunia M. Salameh ◽  
Amjad D. Al-Nasser

In December 2019, a cluster of fatal pneumonia cases presented in Wuhan, China. They were caused by a previously unknown coronavirus. All patients had been associated with the Wuhan Wholefood market, where seafood and live animals are sold. The virus spread rapidly and public health authorities in China initiated a containment effort. However, by that time, travelers had carried the virus to many countries, sparking memories of the previous coronavirus epidemics, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), and causing widespread media attention and panic. Based on clinical criteria and available serological and molecular information, the new disease was called coronavirus disease of 2019 (COVID-19), and the novel coronavirus was called SARS Coronavirus-2 (SARS-CoV-2), emphasizing its close relationship to the 2002 SARS virus (SARS-CoV). The scientific community raced to uncover the origin of the virus, understand the pathogenesis of the disease, develop treatment options, define the risk factors, and work on vaccine development. Here we present a summary of current knowledge regarding the novel coronavirus and the disease it causes.


2021 ◽  
Vol 4 (4) ◽  
pp. 311-323
Author(s):  
Venkataramana Kandi ◽  
Tarun Kumar Suvvari ◽  
Sabitha Vadakedath ◽  
Vikram Godishala

Because of the frequent emergence of novel microbial species and the re-emergence of genetic variants of hitherto known microbes, the global healthcare system, and human health has been thrown into jeopardy. Also, certain microbes that possess the ability to develop multi-drug resistance (MDR) have limited the treatment options in cases of serious infections, and increased hospital and treatment costs, and associated morbidity and mortality. The recent discovery of the novel Coronavirus (n-CoV), the Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) that is causing the CoV Disease-19 (COVID-19) has resulted in severe morbidity and mortality throughout the world affecting normal human lives. The major concern with the current pandemic is the non-availability of specific drugs and an incomplete understanding of the pathobiology of the virus. It is therefore important for pharmaceutical establishments to envisage the discovery of therapeutic interventions and potential vaccines against the novel and MDR microbes. Therefore, this review is attempted to update and explore the current perspectives in microbes, clinical research, drug discovery, and vaccine development to effectively combat the emerging novel and re-emerging genetic variants of microbes.


2021 ◽  
Author(s):  
Paul Naaber ◽  
Virge Jürjenson ◽  
Ainika Adamson ◽  
Epp Sepp ◽  
Liina Tserel ◽  
...  

AbstractBackgroundThe mRNA vaccines for SARS-CoV2 have proven highly effective and are currently used to vaccinate all age groups against COVID-19. Despite their high efficacy in clinical trials, there is limited data on the impact of age, sex, and side effects on vaccine-induced immune responses.MethodsWe here studied the development of SARS-CoV-2 Spike protein RBD domain antibodies after two doses of the Pfizer-BioNTech Comirnaty mRNA vaccine in 118 healthy volunteers and correlated their immune response with age, sex, and side effects reported after the vaccinations.FindingsOur findings show a robust immune response to the Spike protein’s RBD region after the first and the second vaccination dose. However, we also saw a decline of antibody levels at 6 weeks versus 1 week after the second dose, suggesting a waning of the immune response over time. Regardless of this, the antibody levels at 6 weeks after the second dose remained significantly higher than before the vaccination, after the first dose, or in COVID-19 convalescent individuals. We found a decreased vaccination efficacy but fewer adverse events in older individuals, and that mRNA vaccination is less efficient in older males whereas the detrimental impact of age on vaccination outcome is abolished in females at 6 weeks after the second dose.InterpretationThe Pfizer-BioNTech Comirnaty mRNA vaccine induces a strong immune response after two doses of vaccination but older individuals develop fewer side effects and decreased antibody levels at 6 weeks. The waning of anti-viral antibodies in particular in older male individuals suggests that both age and male sex act as risk factors in the immune response to the SARS-CoV-2 mRNA vaccine.FundingThe study was supported by the Centre of Excellence in Translational Genomics (EXCEGEN), and the Estonian Research Council grant PRG377 and SYNLAB Estonia.Research in contextEvidence before this studyThe first studies addressing the immune responses in older individuals after the single-dose administration of the SARS-CoV-2 mRNA vaccines have been published. We searched PubMed and medRxiv for publications on the immune response of SARS-CoV-2-mRNA vaccines, published in English, using the search terms “SARS-CoV-2”, “COVID-19”, “vaccine response”, “mRNA vaccine”, up to April 15th, 2021. To date, most mRNA vaccine response studies have not been peer-reviewed, and data on the role of age, sex and side effects on SARS-CoV-2-mRNA vaccines in real vaccination situations is limited. Some studies have found a weaker immune response in older individuals after the first dose and these have been measured at a relatively short period (within 1-2 weeks) after the first dose but little longer-term evidence exists on the postvaccination antibody persistence. Even less information is available on sex differences or correlations with mRNA vaccine side effects.Added value of this studyIn this study, we assessed the antibody response up to 6 weeks after the second dose of Pfizer-BioNTech Comirnaty mRNA vaccine in 118 individuals. Our findings show a strong initial immune response after the first dose and an even higher Spike RBD antibody levels at 1 week after the second dose, but these significantly declined at 6 weeks after the second dose. We also found a weaker immune response and faster waning of antibodies in older vaccinated individuals, which correlated with fewer side effects at the time of vaccinations. Furthermore, although overall female and male vaccinees responded similarly, we found that age-related waning of the vaccine-related antibodies was stronger amongst older males whereas in females the impact of age was lost at 6 weeks after the second dose.Implications of all the available evidenceNew mRNA vaccines are now applied worldwide as they have shown high efficacy in clinical trials. Our results show that two doses of Pfizer-BioNTech Comirnaty mRNA vaccine induce a strong antibody response to Spike RBD region but these high levels decline 1.5 months after the second dose in most of the vaccinated individuals. Nevertheless, even at 6 weeks after the second dose, they stay significantly higher than at prevaccination, after the first dose of vaccine, or in Covid-19 postinfection. These findings also implicate that fewer adverse effects may indicate lower antibody response after the vaccination and point to the need for more individualized vaccination protocols, in particular among older people.


Author(s):  
Xudan Chen ◽  
Yuying Zhang ◽  
Baoyi Zhu ◽  
Jianwen Zeng ◽  
Wenxin Hong ◽  
...  

AbstractBackgroundThe novel coronavirus disease 2019 (COVID-19) characterized by respiratory symptoms has become a global pandemic although factors influencing viral RNA clearance remained unclear to inform optimal isolation period and treatment strategies.MethodsIn this retrospective study, we included patients with confirmed COVID-19 admitted to Guangzhou Eighth People’s Hospital from 20th January 2020 to 15th March 2020. The associations of clinical characteristics and treatment regimens on time to viral RNA clearance were analyzed.ResultsWe examined 284 consecutive COVID-19 cases, accounting for 82% of confirmed cases in Guangzhou during this period. At the time of reporting (20th March 2020), 276 (97.2%) had recovered and were discharged from hospital with a median hospital stay of 18 days (interquartile range [IQR]:13-24). Overall, 280 patients achieved viral RNA clearance with a median length of 12 days (IQR: 8-16) after onset of illness. Amongst them, 66.1% had viral RNA cleared within 14 days, and 89.3% within 21 days. Older age, severity of disease, time lag from illness onset to hospital admission, high body temperature, and corticosteroid use were associated with delayed clearance of viral RNA. None of the antiviral regimens (chloroquine, oseltamivir, arbidol, and lopinavir/ritonavir) improved viral RNA clearance. The use of lopinavir/ritonavir was associated with delayed clearance of viral RNA after adjusting for confounders.ConclusionIn patients with COVID-19, isolation for a minimum of 21 days after onset of illness may be warranted, while the use of antiviral drugs does not enhance viral RNA clearance.Brief SummaryViral RNA was cleared in 89% of the COVID-19 patients within 21 days after illness onset. The use of antiviral drugs (chloroquine, oseltamivir, arbidol, and lopinavir/ritonavir) did not shorten viral RNA clearance, especially in non-serious cases.


2020 ◽  
Author(s):  
Kumar Sharp ◽  
Dr. Shubhangi Dange

In absence of any specific medication or vaccine till now, experimentation has reached new heights. With lockdown imposed in almost every country and huge economic losses the search for a suitable vaccine has still been unsuccessful. In this study we have approached through in-silico method or reverse vaccinology taking advantage of the genome sequence of the novel coronavirus. We created a multi-epitope model vaccine which can elicit both humoral as well as cell-mediated immune response. It is also docked with toll-like receptor 8 TLR-8. The sequence obtained is antigenic, non-allergenic and 86.3% residues are in favourable region of Ramachandran plot. This sequence might have good hope of emerging as the vaccine of the current pandemic if studied more in depth.


2020 ◽  
Vol 39 (12) ◽  
pp. 2211-2223 ◽  
Author(s):  
Hongjun Miao ◽  
Han Li ◽  
Yinying Yao ◽  
Mingfu Wu ◽  
Chao Lu ◽  
...  

AbstractSince the outbreak of novel coronavirus infection pneumonia in Wuhan City, China, in late 2019, such cases have been gradually reported in other parts of China and abroad. Children have become susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because of their immature immune function. As the outbreak has progressed, more cases of novel coronavirus infection/pneumonia in children have been reported. Compared with adults, the impact of SARS-CoV-2 infection in children is less severe, with a lower incidence and susceptibility in children, which results in fewer children being tested, thereby underestimating the actual number of infections. Therefore, strengthening the diagnosis of the disease is particularly important for children, and early and clear diagnosis can determine treatment strategies and reduce the harm caused by the disease to children. According to the Novel Coronavirus Infection Pneumonia Diagnosis and Treatment Standards (trial version 7) issued by National Health Committee and the latest diagnosis and treatment strategies for novel coronavirus infection pneumonia in children, this review summarizes current strategies on diagnosis and treatment of SARS-CoV-2 infection in children.


Sign in / Sign up

Export Citation Format

Share Document