scholarly journals Egg recognition: The importance of quantifying multiple repeatable features as visual identity signals

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248021
Author(s):  
Jesús Gómez ◽  
Oscar Gordo ◽  
Piotr Minias

Brood parasitized and/or colonial birds use egg features as visual identity signals, which allow parents to recognize their own eggs and avoid paying fitness costs of misdirecting their care to others’ offspring. However, the mechanisms of egg recognition and discrimination are poorly understood. Most studies have put their focus on individual abilities to carry out these behavioural tasks, while less attention has been paid to the egg and how its signals may evolve to enhance its identification. We used 92 clutches (460 eggs) of the Eurasian coot Fulica atra to test whether eggs could be correctly classified into their corresponding clutches based only on their external appearance. Using SpotEgg, we characterized the eggs in 27 variables of colour, spottiness, shape and size from calibrated digital images. Then, we used these variables in a supervised machine learning algorithm for multi-class egg classification, where each egg was classified to the best matched clutch out of 92 studied clutches. The best model with all 27 explanatory variables assigned correctly 53.3% (CI = 42.6–63.7%) of eggs of the test-set, greatly exceeding the probability to classify the eggs by chance (1/92, 1.1%). This finding supports the hypothesis that eggs have visual identity signals in their phenotypes. Simplified models with fewer explanatory variables (10 or 15) showed lesser classification ability than full models, suggesting that birds may use multiple traits for egg recognition. Therefore, egg phenotypes should be assessed in their full complexity, including colour, patterning, shape and size. Most important variables for classification were those with the highest intraclutch correlation, demonstrating that individual recognition traits are repeatable. Algorithm classification performance improved by each extra training egg added to the model. Thus, repetition of egg design within a clutch would reinforce signals and would help females to create an internal template for true recognition of their own eggs. In conclusion, our novel approach based on machine learning provided important insights on how signallers broadcast their specific signature cues to enhance their recognisability.

2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Friction ◽  
2021 ◽  
Author(s):  
Vigneashwara Pandiyan ◽  
Josef Prost ◽  
Georg Vorlaufer ◽  
Markus Varga ◽  
Kilian Wasmer

AbstractFunctional surfaces in relative contact and motion are prone to wear and tear, resulting in loss of efficiency and performance of the workpieces/machines. Wear occurs in the form of adhesion, abrasion, scuffing, galling, and scoring between contacts. However, the rate of the wear phenomenon depends primarily on the physical properties and the surrounding environment. Monitoring the integrity of surfaces by offline inspections leads to significant wasted machine time. A potential alternate option to offline inspection currently practiced in industries is the analysis of sensors signatures capable of capturing the wear state and correlating it with the wear phenomenon, followed by in situ classification using a state-of-the-art machine learning (ML) algorithm. Though this technique is better than offline inspection, it possesses inherent disadvantages for training the ML models. Ideally, supervised training of ML models requires the datasets considered for the classification to be of equal weightage to avoid biasing. The collection of such a dataset is very cumbersome and expensive in practice, as in real industrial applications, the malfunction period is minimal compared to normal operation. Furthermore, classification models would not classify new wear phenomena from the normal regime if they are unfamiliar. As a promising alternative, in this work, we propose a methodology able to differentiate the abnormal regimes, i.e., wear phenomenon regimes, from the normal regime. This is carried out by familiarizing the ML algorithms only with the distribution of the acoustic emission (AE) signals captured using a microphone related to the normal regime. As a result, the ML algorithms would be able to detect whether some overlaps exist with the learnt distributions when a new, unseen signal arrives. To achieve this goal, a generative convolutional neural network (CNN) architecture based on variational auto encoder (VAE) is built and trained. During the validation procedure of the proposed CNN architectures, we were capable of identifying acoustics signals corresponding to the normal and abnormal wear regime with an accuracy of 97% and 80%. Hence, our approach shows very promising results for in situ and real-time condition monitoring or even wear prediction in tribological applications.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 527
Author(s):  
Eran Elhaik ◽  
Dan Graur

In the last 15 years or so, soft selective sweep mechanisms have been catapulted from a curiosity of little evolutionary importance to a ubiquitous mechanism claimed to explain most adaptive evolution and, in some cases, most evolution. This transformation was aided by a series of articles by Daniel Schrider and Andrew Kern. Within this series, a paper entitled “Soft sweeps are the dominant mode of adaptation in the human genome” (Schrider and Kern, Mol. Biol. Evolut. 2017, 34(8), 1863–1877) attracted a great deal of attention, in particular in conjunction with another paper (Kern and Hahn, Mol. Biol. Evolut. 2018, 35(6), 1366–1371), for purporting to discredit the Neutral Theory of Molecular Evolution (Kimura 1968). Here, we address an alleged novelty in Schrider and Kern’s paper, i.e., the claim that their study involved an artificial intelligence technique called supervised machine learning (SML). SML is predicated upon the existence of a training dataset in which the correspondence between the input and output is known empirically to be true. Curiously, Schrider and Kern did not possess a training dataset of genomic segments known a priori to have evolved either neutrally or through soft or hard selective sweeps. Thus, their claim of using SML is thoroughly and utterly misleading. In the absence of legitimate training datasets, Schrider and Kern used: (1) simulations that employ many manipulatable variables and (2) a system of data cherry-picking rivaling the worst excesses in the literature. These two factors, in addition to the lack of negative controls and the irreproducibility of their results due to incomplete methodological detail, lead us to conclude that all evolutionary inferences derived from so-called SML algorithms (e.g., S/HIC) should be taken with a huge shovel of salt.


Hypertension ◽  
2021 ◽  
Vol 78 (5) ◽  
pp. 1595-1604
Author(s):  
Fabrizio Buffolo ◽  
Jacopo Burrello ◽  
Alessio Burrello ◽  
Daniel Heinrich ◽  
Christian Adolf ◽  
...  

Primary aldosteronism (PA) is the cause of arterial hypertension in 4% to 6% of patients, and 30% of patients with PA are affected by unilateral and surgically curable forms. Current guidelines recommend screening for PA ≈50% of patients with hypertension on the basis of individual factors, while some experts suggest screening all patients with hypertension. To define the risk of PA and tailor the diagnostic workup to the individual risk of each patient, we developed a conventional scoring system and supervised machine learning algorithms using a retrospective cohort of 4059 patients with hypertension. On the basis of 6 widely available parameters, we developed a numerical score and 308 machine learning-based models, selecting the one with the highest diagnostic performance. After validation, we obtained high predictive performance with our score (optimized sensitivity of 90.7% for PA and 92.3% for unilateral PA [UPA]). The machine learning-based model provided the highest performance, with an area under the curve of 0.834 for PA and 0.905 for diagnosis of UPA, with optimized sensitivity of 96.6% for PA, and 100.0% for UPA, at validation. The application of the predicting tools allowed the identification of a subgroup of patients with very low risk of PA (0.6% for both models) and null probability of having UPA. In conclusion, this score and the machine learning algorithm can accurately predict the individual pretest probability of PA in patients with hypertension and circumvent screening in up to 32.7% of patients using a machine learning-based model, without omitting patients with surgically curable UPA.


2020 ◽  
Vol 9 (1) ◽  
pp. 1700-1704

Classification of target from a mixture of multiple target information is quite challenging. In This paper we have used supervised Machine learning algorithm namely Linear Regression to classify the received data which is a mixture of target-return with the noise and clutter. Target state is estimated from the classified data using Kalman filter. Linear Kalman filter with constant velocity model is used in this paper. Minimum Mean Square Error (MMSE) analysis is used to measure the performance of the estimated track at various Signal to Noise Ratio (SNR) levels. The results state that the error is high for Low SNR, for High SNR the error is Low


2020 ◽  
Author(s):  
Castro Mayleen Dorcas Bondoc ◽  
Tumibay Gilbert Malawit

Today many schools, universities and institutions recognize the necessity and importance of using Learning Management Systems (LMS) as part of their educational services. This research work has applied LMS in the teaching and learning process of Bulacan State University (BulSU) Graduate School (GS) Program that enhances the face-to-face instruction with online components. The researchers uses an LMS that provides educators a platform that can motivate and engage students to new educational environment through manage online classes. The LMS allows educators to distribute information, manage learning materials, assignments, quizzes, and communications. Aside from the basic functions of the LMS, the researchers uses Machine Learning (ML) Algorithms applying Support Vector Machine (SVM) that will classify and identify the best related videos per topic. SVM is a supervised machine learning algorithm that analyzes data for classification and regression analysis by Maity [1]. The results of this study showed that integration of video tutorials in LMS can significantly contribute knowledge and skills in the learning process of the students.


2021 ◽  
Author(s):  
Marian Popescu ◽  
Rebecca Head ◽  
Tim Ferriday ◽  
Kate Evans ◽  
Jose Montero ◽  
...  

Abstract This paper presents advancements in machine learning and cloud deployment that enable rapid and accurate automated lithology interpretation. A supervised machine learning technique is described that enables rapid, consistent, and accurate lithology prediction alongside quantitative uncertainty from large wireline or logging-while-drilling (LWD) datasets. To leverage supervised machine learning, a team of geoscientists and petrophysicists made detailed lithology interpretations of wells to generate a comprehensive training dataset. Lithology interpretations were based on applying determinist cross-plotting by utilizing and combining various raw logs. This training dataset was used to develop a model and test a machine learning pipeline. The pipeline was applied to a dataset previously unseen by the algorithm, to predict lithology. A quality checking process was performed by a petrophysicist to validate new predictions delivered by the pipeline against human interpretations. Confidence in the interpretations was assessed in two ways. The prior probability was calculated, a measure of confidence in the input data being recognized by the model. Posterior probability was calculated, which quantifies the likelihood that a specified depth interval comprises a given lithology. The supervised machine learning algorithm ensured that the wells were interpreted consistently by removing interpreter biases and inconsistencies. The scalability of cloud computing enabled a large log dataset to be interpreted rapidly; >100 wells were interpreted consistently in five minutes, yielding >70% lithological match to the human petrophysical interpretation. Supervised machine learning methods have strong potential for classifying lithology from log data because: 1) they can automatically define complex, non-parametric, multi-variate relationships across several input logs; and 2) they allow classifications to be quantified confidently. Furthermore, this approach captured the knowledge and nuances of an interpreter's decisions by training the algorithm using human-interpreted labels. In the hydrocarbon industry, the quantity of generated data is predicted to increase by >300% between 2018 and 2023 (IDC, Worldwide Global DataSphere Forecast, 2019–2023). Additionally, the industry holds vast legacy data. This supervised machine learning approach can unlock the potential of some of these datasets by providing consistent lithology interpretations rapidly, allowing resources to be used more effectively.


Sign in / Sign up

Export Citation Format

Share Document