scholarly journals A study on ship collision conflict prediction in the Taiwan Strait using the EMD-based LSSVM method

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250948
Author(s):  
Tian Chai ◽  
Han Xue

Ship collision accidents are the primary threat to traffic safety in the sea. Collision accidents can cause casualties and environmental pollution. The collision risk is a major indicator for navigators and surveillance operators to judge the collision danger between meeting ships. The number of collision accidents per unit time in a certain water area can be considered to describe the regional collision risk However, historical ship collision accidents have contingencies, small sample sizes and weak regularities; hence, ship collision conflicts can be used as a substitute for ship collision accidents in characterizing the maritime traffic safety situation and have become an important part of methods that quantitatively study the traffic safety problem and its countermeasures. In this work, an EMD-QPSO-LSSVM approach, which is a hybrid of empirical mode decomposition (EMD) and quantum-behaved particle swarm optimization (QPSO) optimized least squares support vector machine (LSSVM) model, is proposed to forecast ship collision conflicts. First, original ship collision conflict time series are decomposed into a collection of intrinsic mode functions (IMFs) and a residue with EMD. Second, both the IMF components and residue are applied to establish the corresponding LSSVM models, where the key parameters of the LSSVM are optimized by QPSO algorithm. Then, each subseries is predicted with the corresponding LSSVM. Finally, the prediction values of the original ship collision conflict datasets are calculated by the sum of the forecasting values of each subseries. The prediction results of the proposed method is compared with GM, Lasso regression method, EMD-ENN, and the predicted results indicate that the proposed method is efficient and can be used for the ship collision conflict prediction.

2021 ◽  
Vol 9 (5) ◽  
pp. 538
Author(s):  
Jinwan Park ◽  
Jung-Sik Jeong

According to the statistics of maritime collision accidents over the last five years (2016–2020), 95% of the total maritime collision accidents are caused by human factors. Machine learning algorithms are an emerging approach in judging the risk of collision among vessels and supporting reliable decision-making prior to any behaviors for collision avoidance. As the result, it can be a good method to reduce errors caused by navigators’ carelessness. This article aims to propose an enhanced machine learning method to estimate ship collision risk and to support more reliable decision-making for ship collision risk. In order to estimate the ship collision risk, the conventional support vector machine (SVM) was applied. Regardless of the advantage of the SVM to resolve the uncertainty problem by using the collected ships’ parameters, it has inherent weak points. In this study, the relevance vector machine (RVM), which can present reliable probabilistic results based on Bayesian theory, was applied to estimate the collision risk. The proposed method was compared with the results of applying the SVM. It showed that the estimation model using RVM is more accurate and efficient than the model using SVM. We expect to support the reasonable decision-making of the navigator through more accurate risk estimation, thus allowing early evasive actions.


2021 ◽  
Vol 9 (2) ◽  
pp. 180
Author(s):  
Lei Du ◽  
Osiris A. Valdez Banda ◽  
Floris Goerlandt ◽  
Pentti Kujala ◽  
Weibin Zhang

Ship collision is the most common type of accident in the Northern Baltic Sea, posing a risk to the safety of maritime transportation. Near miss detection from automatic identification system (AIS) data provides insight into maritime transportation safety. Collision risk always triggers a ship to maneuver for safe passing. Some frenetic rudder actions occur at the last moment before ship collision. However, the relationship between ship behavior and collision risk is not fully clarified. Therefore, this work proposes a novel method to improve near miss detection by analyzing ship behavior characteristic during the encounter process. The impact from the ship attributes (including ship size, type, and maneuverability), perceived risk of a navigator, traffic complexity, and traffic rule are considered to obtain insights into the ship behavior. The risk severity of the detected near miss is further quantified into four levels. This proposed method is then applied to traffic data from the Northern Baltic Sea. The promising results of near miss detection and the model validity test suggest that this work contributes to the development of preventive measures in maritime management to enhance to navigational safety, such as setting a precautionary area in the hotspot areas. Several advantages and limitations of the presented method for near miss detection are discussed.


2019 ◽  
Vol 45 (10) ◽  
pp. 3193-3201 ◽  
Author(s):  
Yajuan Li ◽  
Xialing Huang ◽  
Yuwei Xia ◽  
Liling Long

Abstract Purpose To explore the value of CT-enhanced quantitative features combined with machine learning for differential diagnosis of renal chromophobe cell carcinoma (chRCC) and renal oncocytoma (RO). Methods Sixty-one cases of renal tumors (chRCC = 44; RO = 17) that were pathologically confirmed at our hospital between 2008 and 2018 were retrospectively analyzed. All patients had undergone preoperative enhanced CT scans including the corticomedullary (CMP), nephrographic (NP), and excretory phases (EP) of contrast enhancement. Volumes of interest (VOIs), including lesions on the images, were manually delineated using the RadCloud platform. A LASSO regression algorithm was used to screen the image features extracted from all VOIs. Five machine learning classifications were trained to distinguish chRCC from RO by using a fivefold cross-validation strategy. The performance of the classifier was mainly evaluated by areas under the receiver operating characteristic (ROC) curve and accuracy. Results In total, 1029 features were extracted from CMP, NP, and EP. The LASSO regression algorithm was used to screen out the four, four, and six best features, respectively, and eight features were selected when CMP and NP were combined. All five classifiers had good diagnostic performance, with area under the curve (AUC) values greater than 0.850, and support vector machine (SVM) classifier showed a diagnostic accuracy of 0.945 (AUC 0.964 ± 0.054; sensitivity 0.999; specificity 0.800), showing the best performance. Conclusions Accurate preoperative differential diagnosis of chRCC and RO can be facilitated by a combination of CT-enhanced quantitative features and machine learning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florent Le Borgne ◽  
Arthur Chatton ◽  
Maxime Léger ◽  
Rémi Lenain ◽  
Yohann Foucher

AbstractIn clinical research, there is a growing interest in the use of propensity score-based methods to estimate causal effects. G-computation is an alternative because of its high statistical power. Machine learning is also increasingly used because of its possible robustness to model misspecification. In this paper, we aimed to propose an approach that combines machine learning and G-computation when both the outcome and the exposure status are binary and is able to deal with small samples. We evaluated the performances of several methods, including penalized logistic regressions, a neural network, a support vector machine, boosted classification and regression trees, and a super learner through simulations. We proposed six different scenarios characterised by various sample sizes, numbers of covariates and relationships between covariates, exposure statuses, and outcomes. We have also illustrated the application of these methods, in which they were used to estimate the efficacy of barbiturates prescribed during the first 24 h of an episode of intracranial hypertension. In the context of GC, for estimating the individual outcome probabilities in two counterfactual worlds, we reported that the super learner tended to outperform the other approaches in terms of both bias and variance, especially for small sample sizes. The support vector machine performed well, but its mean bias was slightly higher than that of the super learner. In the investigated scenarios, G-computation associated with the super learner was a performant method for drawing causal inferences, even from small sample sizes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sajjad Afrakhteh ◽  
Ahmad Ayatollahi ◽  
Fatemeh Soltani

Abstract In this study, we propose a method for detecting obstructive sleep apnea (OSA) based on the features extracted from empirical mode decomposition (EMD) and the neural networks trained by particle swarm optimization (PSO) in the classification phase. After extracting the features from the intrinsic mode functions (IMF) of each heart rate variability (HRV) signal of each segment, these features were applied to the input of popular classifiers such as multi-layer perceptron neural networks (MLPNN), Naïve Bayes, linear discriminant analysis (LDA), k-nearest neighborhood (KNN), and support vector machines (SVM) were applied. The results show that the MLPNN learned with back propagation (BP) algorithm has a diagnostic accuracy of less than 90%, and this may be due to being derivative based property of the BP algorithm, which causes trapping in the local minima. For Improving MLPNN’s performance, we used the PSO algorithm instead of the BP method in training part. Therefore, the MLPNN’s accuracy improved from 89.36 to 97.66% after the application of the PSO algorithm. The proposed method has also reached to 97.78 and 97.96% in sensitivity and specificity, respectively. So, it can be concluded that the proposed method achieves better or comparable results when compared with the previous works in this field.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


2019 ◽  
Vol 72 (06) ◽  
pp. 1449-1468 ◽  
Author(s):  
Weibin Zhang ◽  
Xinyu Feng ◽  
Yong Qi ◽  
Feng Shu ◽  
Yijin Zhang ◽  
...  

The absence of a regional, open water vessel collision risk assessment system endangers maritime traffic and hampers safety management. Most recent studies have analysed the risk of collision for a pair of vessels and propose micro-level risk models. This study proposes a new method that combines density complexity and a multi-vessel collision risk operator for assessing regional vessel collision risk. This regional model considers spatial and temporal features of vessel trajectory in an open water area and assesses multi-vessel near-miss collision risk through danger probabilities and possible consequences of collision risks via four types of possible relative striking positions. Finally, the clustering method of multi-vessel encountering risk, based on the proposed model, is used to identify high-risk collision areas, which allow reliable and accurate analysis to aid implementation of safety measures.


Sign in / Sign up

Export Citation Format

Share Document