scholarly journals The bank of swimming organisms at the micron scale (BOSO-Micro)

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252291
Author(s):  
Marcos F. Velho Rodrigues ◽  
Maciej Lisicki ◽  
Eric Lauga

Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies.

Cellulose ◽  
2021 ◽  
Author(s):  
Marjo Määttänen ◽  
Maria Gunnarsson ◽  
Helena Wedin ◽  
Sara Stibing ◽  
Carina Olsson ◽  
...  

AbstractRecycling of textiles is of importance due to the large amount of waste generated from the increasing consumption and use worldwide. Cotton-rich pre-consumer textiles are considered as potential raw material for production of man-made regenerated fibres, but demands purification from the blends with synthetic fibres as well as the dyes and finishing chemicals. In this study we explore the use of different pre-treatments of pre-consumer textiles to meet specific parameters for production of fibres in the cold NaOH(aq) or cellulose carbamate process. The pre-treatments consisted of different bleaching sequences and were performed on both uncoloured and coloured pre-consumer textiles. For the uncoloured textile, degree of polymerisation and amount of inorganic content was efficiently reduced making the material suitable for both the cold NaOH(aq) and the cellulose carbamate process. In case of the coloured textile, the pre-treatments were able to remove the dye and decrease the inorganic content as well as reduce the degree of polymerisation but only sufficiently enough for production of fibres in the cellulose carbamate process. The work was able to prove a fibre-to-fibre concept while further optimisation of the regeneration steps is expected to improve the mechanical properties of the produced fibres in future studies.


2008 ◽  
Vol 602 ◽  
pp. 209-218 ◽  
Author(s):  
J. J. J. GILLISSEN ◽  
B. J. BOERSMA ◽  
P. H. MORTENSEN ◽  
H. I. ANDERSSON

We use direct numerical simulation to study turbulent drag reduction by rigid polymer additives, referred to as fibres. The simulations agree with experimental data from the literature in terms of friction factor dependence on Reynolds number and fibre concentration. An expression for drag reduction is derived by adopting the concept of the elastic layer.


1971 ◽  
Vol 47 (1) ◽  
pp. 21-31 ◽  
Author(s):  
R. A. Despard ◽  
J. A. Miller

The results of an experimental investigation of separation in oscillating laminar boundary layers is reported. Instantaneous velocity profiles obtained with multiple hot-wire anemometer arrays reveal that the onset of wake formation is preceded by the initial vanishing of shear at the wall, or reverse flow, throughout the entire cycle of oscillation. Correlation of the experimental data indicates that the frequency, Reynolds number and dynamic history of the boundary layer are the dominant parameters and oscillation amplitude has a negligible effect on separation-point displacement.


2021 ◽  
Vol 34 (1) ◽  
pp. 79-88
Author(s):  
Dean Radin ◽  
Helané Wahbeh ◽  
Leena Michel ◽  
Arnaud Delorme

An experiment we conducted from 2012 to 2013, which had not been previously reported, was designed to explore possible psychophysical effects resulting from the interaction of a human mind with a quantum system. Participants focused their attention toward or away from the slits in a double-slit optical system to see if the interference pattern would be affected. Data were collected from 25 people in individual half-hour sessions; each person repeated the test ten times for a total of 250 planned sessions. “Sham” sessions designed to mimic the experimental sessions without observers present were run immediately before and after as controls. Based on the planned analysis, no evidence for a psychophysical effect was found. Because this experiment differed in two essential ways from similar, previously reported double-slit experiments, two exploratory analyses were developed, one based on a simple spectral analysis of the interference pattern and the other based on fringe visibility. For the experimental data, the outcome supported a pattern of results predicted by a causal psychophysical effect, with the spectral metric resulting in a 3.4 sigma effect (p = 0.0003), and the fringe visibility metric resulting in 7 of 22 fringes tested above 2.3 sigma after adjustment for type I error inflation, with one of those fringes at 4.3 sigma above chance (p = 0.00001). The same analyses applied to the sham data showed uniformly null outcomes. Other analyses exploring the potential that these results were due to mundane artifacts, such as fluctuations in temperature or vibration, showed no evidence of such influences. Future studies using the same protocols and analytical methods will be required to determine if these exploratory results are idiosyncratic or reflect a genuine psychophysical influence.


2001 ◽  
Author(s):  
Hidesada Kanda

Abstract For plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) the critical Reynolds number increases as the contraction ratio in the inlet section increases, and (iii) the minimum critical Reynolds number is obtained when the contraction ratio is the smallest or one, and there is no-shaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum critical Reynolds number is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow.


2018 ◽  
Vol 230 (1) ◽  
pp. 333-349 ◽  
Author(s):  
Ali Bakhshandeh Rostami ◽  
Mohammad Mobasheramini ◽  
Antonio Carlos Fernandes

1968 ◽  
Vol 90 (2) ◽  
pp. 395-404 ◽  
Author(s):  
H. N. Ketola ◽  
J. M. McGrew

A theory of the partially wetted rotating disk is described and experimental data presented which verify the application of this theory in practical applications. Four different flow regimes may be identified according to the value of the disk Reynolds number and the spacing ratio between the disk and stationary wall. The analytical expressions for prediction of the pressure gradient developed and the frictional resistance are uniquely determined by the disk Reynolds number, spacing ratio, and the degree of wetting of the disk.


2015 ◽  
Vol 14 (2) ◽  
pp. 90 ◽  
Author(s):  
K. L. M. Dos Passos ◽  
B. M. Viegas ◽  
E. N. Macêdo ◽  
J. A. S. Souza ◽  
E. M. Magalhães

The use of the waste of the Bayer process, red mud, is due to its chemical and mineralogical composition that shows a material rich in oxides of iron, titanium and aluminum. Some studies conducted show that this waste can be applied as a source of alternative raw material for concentration and subsequent recovery of titanium compounds from an iron leaching process, which is present in higher amounts, about 30% by weight. To obtain a greater understanding about the leaching kinetics, the information of the kinetic data of this process is very important. In this context, the main objective of this work is the development of a mathematical model that is able to fit the experimental data (conversion / extraction iron, titanium and aluminum) of the leaching process by which is possible to obtain the main kinetic parameters such as the activation energy and the velocity of chemical reactions as well as the controlling step of the process. The development of the mathematical model was based on the model of core decreasing. The obtained model system of ordinary differential equations was able to fit the experimental data obtained from the leaching process, enabling the determination of the controlling step, the rate constants and the activation energies of the leaching process.


Author(s):  
Patricia Streufert ◽  
Terry X. Yan ◽  
Mahdi G. Baygloo

Local turbulent convective heat transfer from a flat plate to a circular impinging air jet is numerically investigated. The jet-to-plate distance (L/D) effect on local heat transfer is the main focus of this study. The eddy viscosity V2F turbulence model is used with a nonuniform structured mesh. Reynolds-Averaged Navier-Stokes equations (RANS) and the energy equation are solved for axisymmetric, three-dimensional flow. The numerical solutions obtained are compared with published experimental data. Four jet-to-plate distances, (L/D = 2, 4, 6 and 10) and seven Reynolds numbers (Re = 7,000, 15,000, 23,000, 50,000, 70,000, 100,000 and 120,000) were parametrically studied. Local and average heat transfer results are analyzed and correlated with Reynolds number and the jet-to-plate distance. Results show that the numerical solutions matched experimental data best at low jet-to-plate distances and lower Reynolds numbers, decreasing in ability to accurately predict the heat transfer as jet-to-plate distance and Reynolds number was increased.


Author(s):  
Jean-Louis Champion ◽  
Pasquale Di Martino ◽  
Xavier Coron

The aim of this study is to determine the discharge coefficient of a multiperforated wall sample designed by AVIO, and more precisely to show the influence of each surrounding flow (inside holes, coolant and main flows). Results obtained are compared to correlations from literature. As previously observed, it is found that the discharge coefficient is strongly dependent on the Reynolds number relative to the hole flow (Reh). The influence of the coolant flow has been proved. The comparison with classical correlations shows many differences: i) on the expected asymptotic value ii) on the rate of increase for the lowest values of Reh. This influence is not taken into account by classical correlations deduced from experiments carried out without crossflow. Based on our experiments, we determined a general expression of Cd. Experimental data are fitted with a function of type Cd = A(1−exp(−B.Reh)), where A and B are expressed as functions of the Reynolds number (Re2) of the coolant flow.


Sign in / Sign up

Export Citation Format

Share Document