scholarly journals Influence of collagen and some proteins on gel properties of jellyfish gelatin

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253254
Author(s):  
Artima Lueyot ◽  
Vilai Rungsardthong ◽  
Savitri Vatanyoopaisarn ◽  
Pokkwan Hutangura ◽  
Benjamaporn Wonganu ◽  
...  

Marine gelatin is one of the food proteins used in food and non-food products, offering desirable functionalities such as gelling, thickening, and binding. Jellyfish has been chosen for this gelatin research, in view of the benefits of its main collagen protein and lower fat content, which may reduce the amounts of chemicals used in the preparative steps of gelatin production. To date, the lack of identified proteins in gelatin has limited the understanding of differentiating intrinsic factors quantitatively and qualitatively affecting gel properties. No comparison has been made between marine gelatin of fish and that of jellyfish, regarding protein type and distribution differences. Therefore, the study aimed at characterizing jellyfish gelatin extracted from by-products, that are i.e., pieces that have broken off during the grading and cleaning step of salted jellyfish processing. Different pretreatment by hydrochloric acid (HCl) concentrations (0.1 and 0.2 M) and hot water extraction time (12 and 24 h) were studied as factors in jellyfish gelatin extraction. The resultant jellyfish gelatin with the highest gel strength (JFG1), as well as two commercial gelatins of fish gelatin (FG) and bovine gelatin (BG), were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that the jellyfish gelatin (JFG1) extracted with 0.1 M HCl at 60°C for 12 h delivered a maximum gel strength of 323.74 g, which is lower than for FG and BG, exhibiting 640.65 and 540.06 g, respectively. The gelling and melting temperatures of JFG1 were 7.1°C and 20.5°C, displaying a cold set gel and unstable gel at room temperature, whereas the gelling and melting temperatures of FG and BG were 17.4°C, 21.3°C, and 27.5°C, 32.7°C, respectively. Proteomic analysis shows that 29 proteins, of which 10 are types of collagen proteins and 19 are non-collagen proteins, are common to all BG, FG, and JFG1, and that JFG1 is missing 3 other collagen proteins (collagen alpha-2 (XI chain), collagen alpha-2 (I chain), and collagen alpha-2 (IV chain), that are important to gel networks. Thus, the lack of these 3 collagen types influences the inferior gel properties of jellyfish gelatin.

2021 ◽  
Vol 302 ◽  
pp. 02009
Author(s):  
Wiriya Charoenchokpanich ◽  
Pratchaya Muangrod ◽  
Vilai Rungsardthong ◽  
Savitri Vatanyoopaisarn ◽  
Benjamaporn Wonganu ◽  
...  

Salted jellyfish by-products have collagen protein that is mainly sold for animal feed at a low price. The change of jellyfish by-products into a food ingredient like gelatine could benefit food applications and reduce food waste. Indeed, jellyfish gelatine production is a time-consuming process that includes alkaline pre-treatment, acid pre-treatment, hot water extraction, and drying. Reduced times of acid pre-treatment and water extraction might deliver different gel properties. Therefore, this research aimed to investigate the effect of hydrochloric acid (HCl) pre-treatment on the gel quality of resultant gelatine. Desalted jellyfish by-products were immersed in 0.5 M sodium hydroxide at 4oC for 1 h and then were acidtreated by varying HCl concentrations (0.1, 0.2, and 0.3 M) at 25oC for 2 h. After that, samples were extracted at 60oC for 3 h and dried at 60oC for 3 days. Results showed that gelatine yield significantly increased with increasing HCl concentration. Gelatine yield were 2.97±0.97%, 5.60±1.01%, and 6.34±1.08%, after extraction with 0.1, 0.2, and 0.3 M HCl, respectively. Gel strength generally decreased as HCl concentration increased. Gel strength values were in the range of 118.89-223.60 g. The colour of jellyfish gelatine showed light to dark brown with no differences in Hue values. Thus, the short duration of HCl pre-treatment for 2 h and hot water extraction for 3 h was insufficient for the jellyfish gelatine process.


2022 ◽  
Author(s):  
Khushboo ◽  
Nutan Kaushik ◽  
Kristina Norne Widell ◽  
Rasa Slizyte ◽  
Asha Kumari

Abstract Surimi industry produces large quantity of by-products as a combination of skin, bones, and scale, which due to technical difficulty in separation, are being currently utilized for production of low- value products such as biofertilizers and fish feed. Present paper focuses on utilization of combined skin, bones, and scale from Pink Perch (Nemipterus japonicus) obtained from surimi industry for gelatin extraction using single step process. Single step extraction method with acetic acid and water was optimized using Response Surface Methodology (RSM) to maximize yield and gel strength so that the process can be applied for sustainable utilization. Parameters such as pH (A), extraction temperature (B) and extraction time (C) with respect to yield and L-hydroxyproline content were optimized. Highest gelatin yield was obtained at pH 3, 75°C extraction temperature, and 30 min extraction time. Gelatin yield and L-hydroxyproline content under optimum condition were 16.2% and 41.62 mg.g−1. The chemical composition, functional, rheological, and structural properties of gelatin were examined and compared with commercial bovine gelatin. Gelatin thus obtained at optimized condition exhibited high gel strength (793g) and higher imino acid content (18.1%) than bovine gelatin. FTIR spectra depicted high similarities between both gelatin sample. Thus, the optimized method can be utilized for gelatin extraction from Pink Perch by-products for development of high value products such as food application.


Author(s):  
Tanyamon Petcharat ◽  
Soottawat Benjakul ◽  
Yacine Hemar

AbstractThe impact of gellan (GL) at different levels (5–20 % of total solid) on the properties of fish gelatin (FG) gels was studied. Gel strength and hardness of FG/GL mixed gel increased, while springiness and cohesiveness decreased as the levels of GL were increased (p< 0.05). Gelling and melting temperatures also increased with increasing levels of GL incorporated (p< 0.05).L*- andb*-values of FG/GL mixed gel decreased, whereas∆E*-value increased with increasing GL levels (p< 0.05). Microstructure studies revealed that denser structure with very small voids in gel network was observed upon GL addition. The addition of GL at a low level (5 %) had no adverse effect on sensory property, and no effect on syneresis of FG/GL mixed gels. Therefore, the addition of 5 % GL can be used to improve gelling property of FG via increasing gelling points without affecting sensory property of the resulting gel.


10.5219/1319 ◽  
2020 ◽  
Vol 14 ◽  
pp. 713-720
Author(s):  
Aneta Polaští­ková ◽  
Robert Gál ◽  
Pavel Mokrejš ◽  
Jana Orsavová

Chicken stomachs are by-products obtained from the poultry processing in slaughterhouses. Their amount has been gradually increasing as a consequence of a continually rising poultry consumption. Since these animal tissues are still rich in proteins, mainly collagen, fat, and minerals, it is essential and beneficial to investigate the appropriate management and further processing. Collagen could be extracted from chicken stomachs and used as a raw material in the food, cosmetic, medical, and also pharmaceutical industry. This paper is to investigate possibilities of such extraction of collagen products, gelatines, or alternatively hydrolysates, from chicken stomachs after prior biotechnological treatment with the proteolytic enzyme Protamex. In this experiment, non-collagenous proteins were removed from stomachs using 0.03 M NaOH and 0.2 M NaCl. Subsequently, the tissue was defatted applying acetone and the enzyme Lipolase. Purified and dried collagen was then treated with the proteolytic enzyme Protamex. In the last step, gelatine was extracted from the tissue in hot water. The influence of selected processing parameters on the extraction efficiency and final product quality was monitored. The extraction conditions included the amount of the added enzyme (0.1 – 0.4%) and the extraction temperature of between 60 and 65 °C. The total gelatine yield ranged from 43.80 to 96.45% and the gel strength varied from 2 ±0 to 429 ±8 Bloom. The enzymatic treatment of the raw material is an economical and ecological alternative to traditional acid or alkaline treatments. Extracted gelatine with the gel strength of 100 – 300 Bloom would be suitable for the applications in the food industry in the production of confectionery, marshmallow, aspic or dairy products.


2021 ◽  
Vol 22 (22) ◽  
pp. 12104
Author(s):  
Jesus Valcarcel ◽  
Carolina Hermida-Merino ◽  
Manuel M. Piñeiro ◽  
Daniel Hermida-Merino ◽  
José Antonio Vázquez

The expansion of fish filleting, driven by the increasing demand for convenience food, concomitantly generates a rising amount of skinning by-products. Current trends point to a growing share of aquaculture in fish production, so we have chosen three established aquaculture species to study the properties of gelatin extracted from their skin: rainbow trout, commonly filleted; and seabass and seabream, marketed whole until very recently. In the first case, trout skin yields only 1.6% gelatin accompanied by the lowest gel strength (96 g bloom), while yield for the other two species exceeds 6%, and gel strength reaches 181 and 229 g bloom for seabass and seabream, respectively. These results are in line with the proportion of total imino acids analyzed in the gelatin samples. Molecular weight profiling shows similarities among gelatins, but seabass and seabream gelatins appear more structured, with higher proportion of β-chains and high molecular weight aggregates, which may influence the rheological properties observed. These results present skin by-products of seabream, and to a minor extent seabass, as suitable raw materials to produce gelatin through valorization processes.


2021 ◽  
Vol 12 (1S) ◽  
pp. 62-73
Author(s):  
Nor Anis Shafira Rosidi ◽  
Asmaliza Abdul Ghani @ Yaacob ◽  
Nurhayati Yusof ◽  
Norzaida Yusof

Large production of red dragon fruit by-products, which are frequently discarded from food industry has become a major waste problem. Converting this waste into useful products with good physicochemical properties could solve the pollution issues. Thus, a study was carried out to investigate the effect of blanching and drying temperatures on physicochemical properties of red dragon fruit peel powder. Dragon fruit peel was pre-treated with hot water at 90 °C for 2 minutes before being dried in hot air oven dryer at 50 °C, 60 °C and 70 °C. Results showed that the powdered sample of blanched and dried at 50 °C had significantly higher fiber, water activity and moisture content than those of unblanched/blanched and dried at 60 °C and 70 °C. Result also showed that the colour of this powder was similar to the fresh dragon fruit peel. When dried at 50 °C, the unblanched and blanched powders exhibited a slightly higher water solubility index compared to those dried at 60 °C and 70 °C. Based on the evaluation of bulk and tapped densities, all powders having the Carr Index in the range of values between 20 and 28 thus can be categorised as slightly poor flowing. For all conditions studied, powder that was blanched and dried at 50 °C was the best condition as it contained the highest amount of fiber with good physicochemical properties.


2002 ◽  
Vol 4 (2) ◽  
pp. 1
Author(s):  
Iwan Y.B. Lelana ◽  
Amir Husni

Manyung is one of low value fish in Yogyakarta. In order to increase the value, manyung was processed into surimi. In this research, manyung was processed into surimi with different heating temperatures (40, 45, 50, 55, 60, and 70oC) and washing time frequency (0, 1, 2, 3, 4, and 5 times) to investigate the gel properties of manyung surimi. Gel strength of manyung surimi increased as washing time treatment increased from 0 to 5 times. Statistical analysis showed that the 4 washing time and 5 washing time have similar gel strength and sensory characteristics. Manyung surimi with 5 washing time and pre-incubation at 60oC followed by cooking at 90oC produced the highest gel strength.


Development ◽  
1991 ◽  
Vol 111 (1) ◽  
pp. 191-196 ◽  
Author(s):  
T.F. Linsenmayer ◽  
Q.A. Chen ◽  
E. Gibney ◽  
M.K. Gordon ◽  
J.K. Marchant ◽  
...  

To examine the regulation of collagen types IX and X during the hypertrophic phase of endochondral cartilage development, we have employed in situ hybridization and immunofluorescence histochemistry on selected stages of embryonic chick tibiotarsi. The data show that mRNA for type X collagen appears at or about the time that we detect the first appearance of the protein. This result is incompatible with translational regulation, which would require accumulation of the mRNA to occur at an appreciably earlier time. Data on later-stage embryos demonstrate that once hypertrophic chondrocytes initiate synthesis of type X collagen, they sustain high levels of its mRNA during the remainder of the hypertrophic program. This suggests that these cells maintain their integrity until close to the time that they are removed at the advancing marrow cavity. Type X collagen protein in the hypertrophic matrix also extends to the marrow cavity. Type IX collagen is found throughout the hypertrophic matrix, as well as throughout the younger cartilaginous matrices. But the mRNA for this molecule is largely or completely absent from the oldest hypertrophic cells. These data are consistent with a model that we have previously proposed in which newly synthesized type X collagen within the hypertrophic zone can become associated with type II/IX collagen fibrils synthesized and deposited earlier in development (Schmid and Linsenmayer, 1990; Chen et al. 1990).


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3051
Author(s):  
Svetlana R. Derkach ◽  
Nikolay G. Voron’ko ◽  
Yuliya A. Kuchina ◽  
Daria S. Kolotova

This review considers the main properties of fish gelatin that determine its use in food technologies. A comparative analysis of the amino acid composition of gelatin from cold-water and warm-water fish species, in comparison with gelatin from mammals, which is traditionally used in the food industry, is presented. Fish gelatin is characterized by a reduced content of proline and hydroxyproline which are responsible for the formation of collagen-like triple helices. For this reason, fish gelatin gels are less durable and have lower gelation and melting temperatures than mammalian gelatin. These properties impose significant restrictions on the use of fish gelatin in the technology of gelled food as an alternative to porcine and bovine gelatin. This problem can be solved by modifying the functional characteristics of fish gelatin by adding natural ionic polysaccharides, which, under certain conditions, are capable of forming polyelectrolyte complexes with gelatin, creating additional nodes in the spatial network of the gel.


Sign in / Sign up

Export Citation Format

Share Document