scholarly journals Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster

2021 ◽  
Vol 17 (8) ◽  
pp. e1009859
Author(s):  
Hua-Bao Zhang ◽  
Zheng Cao ◽  
Jun-Xue Qiao ◽  
Zi-Qian Zhong ◽  
Chen-Chen Pan ◽  
...  

Wolbachia is a group of intracellular symbiotic bacteria that widely infect arthropods and nematodes. Wolbachia infection can regulate host reproduction with the most common phenotype in insects being cytoplasmic incompatibility (CI), which results in embryonic lethality when uninfected eggs fertilized with sperms from infected males. This suggests that CI-induced defects are mainly in paternal side. However, whether Wolbachia-induced metabolic changes play a role in the mechanism of paternal-linked defects in embryonic development is not known. In the current study, we first use untargeted metabolomics method with LC-MS to explore how Wolbachia infection influences the metabolite profiling of the insect hosts. The untargeted metabolomics revealed 414 potential differential metabolites between Wolbachia-infected and uninfected 1-day-old (1d) male flies. Most of the differential metabolites were significantly up-regulated due to Wolbachia infection. Thirty-four metabolic pathways such as carbohydrate, lipid and amino acid, and vitamin and cofactor metabolism were affected by Wolbachia infection. Then, we applied targeted metabolomics analysis with GC-MS and showed that Wolbachia infection resulted in an increased energy expenditure of the host by regulating glycometabolism and fatty acid catabolism, which was compensated by increased food uptake. Furthermore, overexpressing two acyl-CoA catabolism related genes, Dbi (coding for diazepam-binding inhibitor) or Mcad (coding for medium-chain acyl-CoA dehydrogenase), ubiquitously or specially in testes caused significantly decreased paternal-effect egg hatch rate. Oxidative stress and abnormal mitochondria induced by Wolbachia infection disrupted the formation of sperm nebenkern. These findings provide new insights into mechanisms of Wolbachia-induced paternal defects from metabolic phenotypes.

Parasitology ◽  
2006 ◽  
Vol 132 (6) ◽  
pp. 757-765 ◽  
Author(s):  
M. C. TINSLEY ◽  
M. E. N. MAJERUS

Whilst most animals invest equally in males and females when they reproduce, a variety of vertically transmitted parasites has evolved the ability to distort the offspring sex ratios of their hosts. One such group of parasites are male-killing bacteria. Here we report the discovery of females of the ladybirdAnisosticta novemdecimpunctatathat produced highly female-biased offspring sex ratios associated with a 50% reduction in egg hatch rate. This trait was maternally transmitted with high efficiency, was antibiotic sensitive and was infectious following experimental haemolymph injection. We identified the cause as a male-killingSpiroplasmabacterium and phylogenetic analysis of rDNA revealed that it belongs to theSpiroplasma ixodetisclade in which other sex ratio distorters lie. We tested the potential for interspecific horizontal transfer by injection from an infectedA. novemdecimpunctataline into uninfected individuals of the two-spot ladybirdAdalia bipunctata. In this novel host, the bacterium was able to establish infection, transmit vertically and kill male embryos.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shanshan Ding ◽  
Mingyi Chen ◽  
Ying Liao ◽  
Qiliang Chen ◽  
Xuejuan Lin ◽  
...  

By far, no study has focused on observing the metabolomic profiles in perimenopause-related obesity. This study attempted to identify the metabolic characteristics of subjects with perimenopause obesity (PO). Thirty-nine perimenopausal Chinese women, 21 with PO and 18 without obesity (PN), were recruited in this study. A conventional ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UHPLC-QTOF/MS) followed by principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used as untargeted metabolomics approaches to explore the serum metabolic profiles. Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were used to identify the related metabolic pathways. A total of 46 differential metabolites, along with seven metabolic pathways relevant to PO were identified, which belonged to lipid, amino acids, carbohydrates, and organic acids. As for amino acids, we found a significant increase in l-arginine and d-ornithine in the positive ion (POS) mode and l-leucine, l-valine, l-tyrosine, and N-acetyl-l-tyrosine in the negative ion (NEG) mode and a significant decrease in l-proline in the POS mode of the PO group. We also found phosphatidylcholine (PC) (16:0/16:0), palmitic acid, and myristic acid, which are associated with the significant upregulation of lipid metabolism. Moreover, the serum indole lactic acid and indoleacetic acid were upregulated in the NEG mode. With respect to the metabolic pathways, the d-arginine and d-ornithine metabolisms and the arginine and proline metabolism pathways in POS mode were the most dominant PO-related pathways. The changes of metabolisms of lipid, amino acids, and indoleacetic acid provided a pathophysiological scenario for Chinese women with PO. We believe that the findings of this study are helpful for clinicians to take measures to prevent the women with PO from developing severe incurable obesity-related complications, such as cardiovascular disease and stroke.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1792 ◽  
Author(s):  
Asma Ahmed AlGhamdi ◽  
Mohammed Razeeth Shait Mohammed ◽  
Mazin A. Zamzami ◽  
Abdulrahman L. Al-Malki ◽  
Mohamad Hasan Qari ◽  
...  

Thymoquinone (TQ), a naturally occurring anticancer compound extracted from Nigella sativa oil, has been extensively reported to possess potent anti-cancer properties. Experimental studies showed the anti-proliferative, pro-apoptotic, and anti-metastatic effects of TQ on different cancer cells. One of the possible mechanisms underlying these effects includes alteration in key metabolic pathways that are critical for cancer cell survival. However, an extensive landscape of the metabolites altered by TQ in cancer cells remains elusive. Here, we performed an untargeted metabolomics study using leukemic cancer cell lines during treatment with TQ and found alteration in approximately 335 metabolites. Pathway analysis showed alteration in key metabolic pathways like TCA cycle, amino acid metabolism, sphingolipid metabolism and nucleotide metabolism, which are critical for leukemic cell survival and death. We found a dramatic increase in metabolites like thymine glycol in TQ-treated cancer cells, a metabolite known to induce DNA damage and apoptosis. Similarly, we observed a sharp decline in cellular guanine levels, important for leukemic cancer cell survival. Overall, we provided an extensive metabolic landscape of leukemic cancer cells and identified the key metabolites and pathways altered, which could be critical and responsible for the anti-proliferative function of TQ.


Metabolites ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 487
Author(s):  
Yu Ra Lee ◽  
Ki-Yong An ◽  
Justin Jeon ◽  
Nam Kyu Kim ◽  
Ji Won Lee ◽  
...  

Colorectal cancer is one of the most prevalent cancers in Korea and globally. In this study, we aimed to characterize the differential serum metabolomic profiles between pre-operative and post-operative patients with colorectal cancer. To investigate the significant metabolites and metabolic pathways associated with colorectal cancer, we analyzed serum samples from 68 patients (aged 20–71, mean 57.57 years). Untargeted and targeted metabolomics profiling in patients with colorectal cancer were performed using liquid chromatography-mass spectrometry. Untargeted analysis identified differences in sphingolipid metabolism, steroid biosynthesis, and arginine and proline metabolism in pre- and post-operative patients with colorectal cancer. We then performed quantitative target profiling of polyamines, synthesized from arginine and proline metabolism, to identify potential polyamines that may serve as effective biomarkers for colorectal cancer. Results indicate a significantly reduced serum concentration of putrescine in post-operative patients compared to pre-operative patients. Our metabolomics approach provided insights into the physiological alterations in patients with colorectal cancer after surgery.


Parasitology ◽  
1976 ◽  
Vol 73 (2) ◽  
pp. 223-238 ◽  
Author(s):  
L. F. Le Jambre ◽  
J. H. Whitlock

Vulvar phenotypes and the rate of development of eggs over a range of temperatures were used to compare Haemonchus contortus populations in New York State and Ohio. These parameters indicated that the westernmost boundary of the subspecies Haemonchus contortus cayugensis is the Chautauqua valley in New York. The Haemonchus ecotype in Ohio had a vulvar phenotype formula similar to that described for the subspecies Haemonchus contortus contortus. The relationship between slope and intercept of the regression of rate of egg hatch on temperature was different for morphs within ecotypes as well as between the New York and Ohio ecotypes. Linguiform-A appeared to be the cold-adapted morph in both ecotypes. Smooth was the warm-adapted morph in New York with linguiform-B filling that niche in Ohio.


Metabolism ◽  
2017 ◽  
Vol 71 ◽  
pp. 52-63 ◽  
Author(s):  
Alice Y. Chang ◽  
Antigoni Z. Lalia ◽  
Gregory D. Jenkins ◽  
Tumpa Dutta ◽  
Rickey E. Carter ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Haitao Lu ◽  
Yumei Que ◽  
Xia Wu ◽  
Tianbing Guan ◽  
Hao Guo

Abstract Biofilm formation plays a key role in many bacteria causing infections, which mostly accounts for high-frequency infectious recurrence and antibiotics resistance. In this study, we sought to compare modified metabolism of biofilm and planktonic populations with UTI89, a predominant agent of urinary tract infection, by combining mass spectrometry based untargeted and targeted metabolomics methods, as well as cytological visualization, which enable us to identify the driven metabolites and associated metabolic pathways underlying biofilm formation. Surprisingly, our finding revealed distinct differences in both phenotypic morphology and metabolism between two patterns. Furthermore, we identified and characterized 38 differential metabolites and associated three metabolic pathways involving glycerolipid metabolism, amino acid metabolism and carbohydrate metabolism that were altered mostly during biofilm formation. This discovery in metabolic phenotyping permitted biofilm formation shall provide us a novel insight into the dissociation of biofilm, which enable to develop novel biofilm based treatments against pathogen causing infections, with lower antibiotic resistance.


Metabolites ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Charity R. Mareya ◽  
Fidele Tugizimana ◽  
Lizelle A. Piater ◽  
Ntakadzeni E. Madala ◽  
Paul A. Steenkamp ◽  
...  

Burkholderia andropogonis is the causal agent of bacterial leaf stripe, one of the three major bacterial diseases affecting Sorghum bicolor. However, the biochemical aspects of the pathophysiological host responses are not well understood. An untargeted metabolomics approach was designed to understand molecular mechanisms underlying S. bicolor–B. andropogonis interactions. At the 4-leaf stage, two sorghum cultivars (NS 5511 and NS 5655) differing in disease tolerance, were infected with B. andropogonis and the metabolic changes monitored over time. The NS 5511 cultivar displayed delayed signs of wilting and lesion progression compared to the NS 5655 cultivar, indicative of enhanced resistance. The metabolomics results identified statistically significant metabolites as biomarkers associated with the sorghum defence. These include the phytohormones salicylic acid, jasmonic acid, and zeatin. Moreover, metabolic reprogramming in an array of chemically diverse metabolites that span a wide range of metabolic pathways was associated with the defence response. Signatory biomarkers included aromatic amino acids, shikimic acid, metabolites from the phenylpropanoid and flavonoid pathways, as well as fatty acids. Enhanced synthesis and accumulation of apigenin and derivatives thereof was a prominent feature of the altered metabolomes. The analyses revealed an intricate and dynamic network of the sorghum defence arsenal towards B. andropogonis in establishing an enhanced defensive capacity in support of resistance and disease suppression. The results pave the way for future analysis of the biosynthesis of signatory biomarkers and regulation of relevant metabolic pathways in sorghum.


Sign in / Sign up

Export Citation Format

Share Document