scholarly journals A Review on Male Infertility - Environmental Factors, Pathophysiological and Oxidative Stress

2021 ◽  
Vol 10 (44) ◽  
pp. 3798-3804
Author(s):  
Lata Kanyal Butola ◽  
Archana Dhok ◽  
Deepika Kanyal ◽  
Anjali Vagga

Male infertility is one of the rising global problems with an increasing decline in male semen quality among men living in Asia, Europe, Africa and North America. Infertility is defined as the failure of conception after at least 12 months of unprotected intercourse. Globally 70 million people are affected by infertility. Environmental, occupational and modifiable lifestyle factors may contribute to this decline of male fertility. Various factors associated with male infertility include smoking cigarettes, alcohol intake, use of illicit drugs, obesity, genetic factors, heavy metals, psychological stress, exposure to pesticides and industrial chemicals, poor nutrition intake, oxidative stress, sedentary lifestyle, advanced paternal age, diet and coffee consumption. KEY WORDS Infertility, Antioxidant, Environmental Factors, Endocrine Factors

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Samar R. Saleh ◽  
Rana Attia ◽  
Doaa A. Ghareeb

This study was aimed at evaluating the efficacy of berberine-rich fraction (BF) as a protective and/or a therapeutic agent against inflammation and oxidative stress during male infertility. Sexually mature Sprague-Dawley male rats were divided into five groups treated with either corn oil, BF (100 mg/kg BW, orally, daily for 30 days), gossypol acetate (5 mg/kg BW, i.p.) eight times for 16 days, BF alone for 14 days then coadministered with gossypol acetate for the next 16 days (protected group), or gossypol acetate for 16 days then treated with BF for 30 days (treated group). All animals completed the experimental period (46 days) without obtaining any treatments in the gap period. Sperm parameters, oxidative index, and inflammatory markers were measured. Gossypol injection significantly decreased the semen quality and testosterone level that resulted from the elevation of testicular reactive oxygen and nitrogen species (TBARS and NO), TNF-α, TNF-α-converting enzyme, and interleukins (IL-1β, IL-6, and IL-18) by 230, 180, 12.5, 97.9, and 300%, respectively, while interleukin-12 and tissue inhibitors of metalloproteinases-3 were significantly decreased by 59 and 66%, respectively. BF (protected and treated groups) significantly improved the semen quality, oxidative stress, and inflammation associated with male infertility. It is suitable to use more advanced studies to validate these findings.


2021 ◽  
Vol 48 (2) ◽  
pp. 97-104
Author(s):  
Ahmed T. Alahmar ◽  
Aldo E. Calogero ◽  
Rajender Singh ◽  
Rossella Cannarella ◽  
Pallav Sengupta ◽  
...  

Male infertility has a complex etiopathology, which mostly remains elusive. Although research has claimed that oxidative stress (OS) is the most likely underlying mechanism of idiopathic male infertility, the specific treatment of OS-mediated male infertility requires further investigation. Coenzyme Q10 (CoQ10), a vitamin-like substance, has been found in measurable levels in human semen. It exhibits essential metabolic and antioxidant functions, as well as playing a vital role in mitochondrial bioenergetics. Thus, CoQ10 may be a key player in the maintenance of biological redox balance. CoQ10 concentrations in seminal plasma directly correlate with semen parameters, especially sperm count and sperm motility. Seminal CoQ10 concentrations have been shown to be altered in various male infertility states, such as varicocele, asthenozoospermia, and medical or surgical regimens used to treat male infertility. These observations imply that CoQ10 plays an important physiological role in the maintenance and amelioration of semen quality. The present article thereby aimed to review the possible mechanisms through which CoQ10 plays a role in the regulation of male reproductive function, and to concisely discuss its efficacy as an ameliorative agent in restoring semen parameters in male infertility, as well as its impact on OS markers, sperm DNA fragmentation, pregnancy, and assisted reproductive technology outcomes.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Richard Michael Blay ◽  
Abigail Duah Pinamang ◽  
Augustine E. Sagoe ◽  
Ewurama Dedea Ampadu Owusu ◽  
Nii Koney-Kwaku Koney ◽  
...  

Introduction. Male infertility is known to contribute about half of all infertility cases. In Ghana, the prevalence of male infertility is higher (15.8%) than in females (11.8%). Sperm quality is associated with the likelihood of pregnancy and known to be the cause of male fertility problems 90% of the time. Exposure to certain environmental factors reduces semen quality in men. The study examined the effects of environmental and lifestyle factors on semen quality in Ghanaian men. Materials and Methods. This was a cross-sectional study involving 80 apparent healthy adult males in their reproductive age. Participants were males referred to the laboratory (Immunology Unit of the Korle-Bu Teaching Hospital) for semen analysis test and/or culture and sensitivity. Participants were made to fill out a questionnaire which entailed selected environmental factors (accidents or trauma, exposure to chemicals, radiation, and heat) and lifestyle habits (including alcohol consumption, smoking, and whether participants sat more or less than 4 hours per day). Semen samples were then collected by masturbation into sterile containers and analysed in accordance with WHO guidance for semen analysis within 60 minutes after ejaculation and collection. Results. About 69% of participants had semen pH within the normal range compared to 15% whose pH were lower than 7.2. There was a significantly high number of immotile sperm cells ( p value = 0.017) in participants who sat for more than 4 hours as compared to those that sat for less than 4 hours in a day. Active sperm motility and viability showed significant increase ( p value = 0.002 and 0.009, respectively) in participants who kept their cell phones in their side pockets. Smoking produced a twofold decrease in sperm count as smokers had a significantly lower sperm count ( 12.28 ± 10.95 × 10 6 /ml) compared to the smoke-free ( 23.85 ± 22.14 × 10 6 /ml). For exposure to STDs, no significant differences were recorded among study groups concerning semen quality. Conclusion. Sperm quality in Ghanaian men is associated with lifestyle habits. Smoking and sitting for long hours influenced sperm motility and count, respectively. Knowledge of the factors that influence sperm quality in this geographical region can contribute to informed decisions on effective management of infertility in Ghanaian men.


2019 ◽  
Vol 3 ◽  
pp. 247028971986824 ◽  
Author(s):  
D. M. I. H. Dissanayake ◽  
W. L. R. Keerthirathna ◽  
L. Dinithi C. Peiris

Semen quality plays a pivotal role in maintaining healthy fertilizing ability of spermatozoa. Male infertility is a rising global problem with an increasing declining in male semen quality among men living in Africa, Europe, North American, and Asia. Though the sperm acquire proactive mechanisms during spermatogenesis and their epididymal maturation, they still remain viable for toxic insult. Declining semen quality is a major contributor to infertility. Studies have postulated that different factors, such as exposure to pesticides, industrial chemicals, heavy metals, obesity, alcoholism, tobacco smoking, sedentary lifestyles, poor nutrient intake, oxidative stress, physiological factors, genetic factors can influence male fertility. Routine semen analysis and assays for sperm chromatin integrity are the most widely utilized and best studied adjunctive diagnostics in male infertility. Over the years, scientists have developed different treatment options for male infertility. Male infertility with known etiology can be treated successfully, but other causes like genetic factors require pragmatic approaches. This article summarizes protective mechanisms of spermatogenesis, causes, diagnosis, and both modern and traditional treatment approaches of male infertility. Further, this article highlights present issues and direction for future exploration of the male infertility problem.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Asghar Beigi Harchegani ◽  
Hamid Rahmani ◽  
Eisa Tahmasbpour ◽  
Alireza Shahriary

Background/Aims: Semen hyperviscosity (SHV) is one of the significant factors involved in poor semen quality and male infertility. It also leads major problems during assisted reproduction techniques and in vitro fertilization process. Although influence of SHV on sperm quality, fertilization rate and male infertility have been widely considered, molecular and cellular mechanisms for these abnormalities are not well understood. In this review, we aimed to discuss the proposed cellular and molecular mechanisms of SHV on male reproductive system, the importance of oxidative stress (OS) and the mechanisms by which SHV induces OS and impairment of other antioxidants. Methods: A PubMed/Medline and EM-BASE search was performed using keywords: “hyperviscosity semen”, “oxidative stress”, and “male infertility”. Conclusion: OS induced by reactive oxygen species can be considered as a major mechanism in patients with hyperviscosity semen that is associated with DNA fragmentation, lipid peroxida-tion and sperm membrane disintegrity, apoptosis, depletion of antioxidants, and subsequently poor sperm quality and male infertility. Therefore, antioxidant therapy may improve main pathological effects of hyperviscosity semen, especially oxidative damages and inflammation, on sperm quality and function. Further, randomized controlled studies are necessary to confirm these results and make a comparison between effects of various antioxidants such as N-acethyl-cysteine and Curcumin on fertility problem in patients with hyperviscous semen.


2020 ◽  
Vol 21 (15) ◽  
pp. 5274
Author(s):  
Piotr Kamiński ◽  
Jędrzej Baszyński ◽  
Izabela Jerzak ◽  
Brendan P. Kavanagh ◽  
Ewa Nowacka-Chiari ◽  
...  

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.


2022 ◽  
Vol 34 (1) ◽  
Author(s):  
Naina Kumar ◽  
Amit Kant Singh

Abstract Background Worldwide rising trend in infertility has been observed in the past few years with male infertility arising as a major problem. One main reason for the rise in male infertility cases is declining semen quality. It was found that any factor that affects semen quality can affect male fertility. There are several modifiable factors affecting semen quality including air pollution, use of pesticides and harmful chemicals, exposure to excessive heat, and can lead to decreased male fertility. Main body The present review focuses on some of these environmental factors that affect semen quality and hence, can cause male infertility. The literature from 2000 till June 2021 was searched from various English peer-reviewed journals and WHO fact sheets using the USA National Library of Medicine (PubMed) database, the regional portal of Virtual Health Library, and Scientific Electronic Library Online. The search terms used were: “Air pollution and male fertility”, “Chemicals and male infertility”, “Heat exposure and infertility”, “heavy metals and male fertility”. Conclusion Adverse environmental factors have a significant impact on semen quality, leading to decreased sperm concentration, total sperm count, motility, viability, and increased abnormal sperm morphology, sperm DNA fragmentation, ultimately causing male infertility. However, all these factors are modifiable and reversible, and hence, by mere changing of lifestyle, many of these risk factors can be avoided.


2020 ◽  
Vol 16 ◽  
Author(s):  
Hamed Heydari ◽  
Rafighe Ghiasi ◽  
Saber Ghaderpour ◽  
Rana Keyhanmanesh

Introduction: Obesity resulted by imbalance between the intake of energy and energy consumption can lead to growth and metabolic disease development in people. Both in obese men and animal models, several studies indicate that obesity leads to male infertility. Objective: This review has discussed some mechanisms involved in obesity-induced male infertility. Method: Online documents were searched through Science Direct, Pubmed, Scopus, and Google Scholar websites dating from 1959 to recognize studies on obesity, kisspeptin, leptin, and infertility. Results: Obesity induced elevated inflammatory cytokines and oxidative stress can affect male reproductive functions including spermatogenesis disorders, reduced male fertility power and hormones involved in hypothalamus-pituitarygonadal axis. Conclusion: There is significant evidence that obesity resulted in male infertility. obesity has negative effect on male reproductive function via several mechanisms such as inflammation and oxidative stress.


2021 ◽  
pp. 1-11
Author(s):  
C. Lemvigh ◽  
R. Brouwer ◽  
R. Hilker ◽  
S. Anhøj ◽  
L. Baandrup ◽  
...  

Abstract Background Research has yielded evidence for genetic and environmental factors influencing the risk of schizophrenia. Numerous environmental factors have been identified; however, the individual effects are small. The additive and interactive effects of multiple risk factors are not well elucidated. Twin pairs discordant for schizophrenia offer a unique opportunity to identify factors that differ between patients and unaffected co-twins, who are perfectly matched for age, sex and genetic background. Methods Register data were combined with clinical data for 216 twins including monozygotic (MZ) and dizygotic (DZ) proband pairs (one or both twins having a schizophrenia spectrum diagnosis) and MZ/DZ healthy control (HC) pairs. Logistic regression models were applied to predict (1) illness vulnerability (being a proband v. HC pair) and (2) illness status (being the patient v. unaffected co-twin). Risk factors included: A polygenic risk score (PRS) for schizophrenia, birth complications, birth weight, Apgar scores, paternal age, maternal smoking, season of birth, parental socioeconomic status, urbanicity, childhood trauma, estimated premorbid intelligence and cannabis. Results The PRS [odds ratio (OR) 1.6 (1.1–2.3)], childhood trauma [OR 4.5 (2.3–8.8)], and regular cannabis use [OR 8.3 (2.1–32.7)] independently predicted illness vulnerability as did an interaction between childhood trauma and cannabis use [OR 0.17 (0.03–0.9)]. Only regular cannabis use predicted having a schizophrenia spectrum diagnosis between patients and unaffected co-twins [OR 3.3 (1.1–10.4)]. Conclusion The findings suggest that several risk factors contribute to increasing schizophrenia spectrum vulnerability. Moreover, cannabis, a potentially completely avoidable environmental risk factor, seems to play a substantial role in schizophrenia pathology.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Leila Rashki Ghaleno ◽  
AliReza Alizadeh ◽  
Joël R. Drevet ◽  
Abdolhossein Shahverdi ◽  
Mojtaba Rezazadeh Valojerdi

One important reason for male infertility is oxidative stress and its destructive effects on sperm structures and functions. The particular composition of the sperm membrane, rich in polyunsaturated fatty acids, and the easy access of sperm DNA to oxidative damage due to sperm cell specific cytologic and metabolic features (no cytoplasm left and cells unable to mount stress responses) make it the cell type in metazoans most susceptible to oxidative damage. In particular, oxidative damage to the spermatozoa genome is an important issue and a cause of male infertility, usually associated with single- or double-strand paternal DNA breaks. Various methods of detecting sperm DNA fragmentation have become important diagnostic tools in the prognosis of male infertility and such assays are available in research laboratories and andrology clinics. However, to date, there is not a clear consensus in the community as to their respective prognostic value. Nevertheless, it is important to understand that the effects of oxidative stress on the sperm genome go well beyond DNA fragmentation alone. Oxidation of paternal DNA bases, particularly guanine and adenosine residues, the most sensitive residues to oxidative alteration, is the starting point for DNA damage in spermatozoa but is also a danger for the integrity of the embryo genetic material independently of sperm DNA fragmentation. Due to the lack of a spermatozoa DNA repair system and, if the egg is unable to correct the sperm oxidized bases, the risk of de novo mutation transmission to the embryo exists. These will be carried on to every cell of the future individual and its progeny. Thus, in addition to affecting the viability of the pregnancy itself, oxidation of the DNA bases in sperm could be associated with the development of conditions in young and future adults. Despite these important issues, sperm DNA base oxidation has not attracted much interest among clinicians due to the lack of simple, reliable, rapid and consensual methods of assessing this type of damage to the paternal genome. In addition to these technical issues, another reason explaining why the measurement of sperm DNA oxidation is not included in male fertility is likely to be due to the lack of strong evidence for its role in pregnancy outcome. It is, however, becoming clear that the assessment of DNA base oxidation could improve the efficiency of assisted reproductive technologies and provide important information on embryonic developmental failures and pathologies encountered in the offspring. The objective of this work is to review relevant research that has been carried out in the field of sperm DNA base oxidation and its associated genetic and epigenetic consequences.


Sign in / Sign up

Export Citation Format

Share Document