Determination of Surface Area of Portland Cement and Silica Fume by Mercury Intrusion Porosimetry

10.14359/1864 ◽  
1990 ◽  
Vol 87 (5) ◽  
2013 ◽  
Vol 67 (2) ◽  
Author(s):  
Pavel Šiler ◽  
Josef Krátký ◽  
Iva Kolářová ◽  
Jaromír Havlica ◽  
Jiří Brandštetr

AbstractPossibilities of a multicell isoperibolic-semiadiabatic calorimeter application for the measurement of hydration heat and maximum temperature reached in mixtures of various compositions during their setting and early stages of hardening are presented. Measurements were aimed to determine the impact of selected components’ content on the course of ordinary Portland cement (OPC) hydration. The following components were selected for the determination of the hydration behaviour in mixtures: very finely ground granulated blast furnace slag (GBFS), silica fume (microsilica, SF), finely ground quartz sand (FGQ), and calcined bauxite (CB). A commercial polycarboxylate type superplasticizer was also added to the selected mixtures. All maximum temperatures measured for selected mineral components were lower than that reached for cement. The maximum temperature increased with the decreasing amount of components in the mixture for all components except for silica fume. For all components, except for CB, the values of total released heat were higher than those for pure Portland cement samples.


2018 ◽  
Vol 1 (1) ◽  
pp. 283-292
Author(s):  
Walid Fouad Edris ◽  
Safwat Abdelkader ◽  
Encarnacion Reyes Pozo ◽  
Amparo Moragues Terrades

In this work we have designed an experimental campaign with four different dosages of concrete to study the influence of the principal additions used in marine environments. The effect of material composition [Sulfate Resistant Portland Cement (SRPC), Blast Furnace Slag Portland Cement (BFSPC), Silica Fume (SF) and Fly Ash (FA) with four different mix designs] was performed by means of differential thermal analysis (DTA), mercury intrusion porosimetry (MIP), gas permeability, chloride diffusion and mechanical properties of concrete. In order to simulate the aggressiveness of the marine environment the concretes were immersed in a sodium chloride solution with a concentration of 1 molar during different times of 182, 365 and 546 days. According to the results obtained, the SRPC and SRPC+FA samples suffered the highest rise in permeability, porosity and chloride diffusion, and the greatest loss in compressive strength


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3324 ◽  
Author(s):  
Seong Soo Kim ◽  
Abdul Qudoos ◽  
Sadam Hussain Jakhrani ◽  
Jeong Bae Lee ◽  
Hong Gi Kim

Globally, concrete is the most widely used construction material. The composition of concrete plays an important role in controlling its overall performance. Concrete is composed of approximately 70%–80% aggregates, by volume. Therefore, it is mandatory to investigate the effect of aggregates on the performance of concrete. For this purpose, this study investigated the effect of three different coarse aggregates on the mechanical properties, durability, and microstructure of concrete. Concrete specimens were made using aggregates obtained from three regions with different mineralogies. The specimens were also made by replacing cement with silica fume. The specimens were analyzed in terms of compressive, flexural, and splitting tensile strengths, chloride penetration, carbonation, mercury intrusion porosimetry, and scanning electron microscopy. The results demonstrate that the specimens made with rougher coarse aggregates and silica fume had enhanced performance in comparison to those made with smoother aggregates.


2019 ◽  
Vol 12 (2) ◽  
pp. 210-232 ◽  
Author(s):  
H. F. CAMPOS ◽  
T. M. S. ROCHA ◽  
G. C. REUS ◽  
N. S. KLEIN ◽  
J. MARQUES FILHO

Abstract Cement is considered the basic component with the highest environmental impact in construction, in terms of CO2 emissions. As for the aggregates, the process of comminution of rocks, in addition to artificial sand, generates stone powder that ends up being stored outdoors, generating environmental damages. Thus, the replacement of cement by stone powder appears as an attractive alternative towards the sustainable concretes. In this context, the objective of this paper is to determine the maximum packing density in Portland cement, silica fume and stone dust pastes, to determine the optimal cement substitution content for the stone powder. In addition, it is intended to verify the influence of excess water on the consistency of the mixtures produced. The substitution was done in contents equal to 0%, 7%, 14% and 21% by volume and, for each content, the packing density was determined analytically by CPM model and combinations were reproduced experimentally. Excess water was checked by the mini Kantro cone test. The results showed that the higher cement substitution content of the stone powder obtained the higher packing density, experimental and analytical, and the higher workability, allowing economic and environmental advantages. Analyzing each material, the stone powder resulted in the highest packing density and silica fume is the lowest one. Therefore, finer particles resulted in lower packaging densities, due to the greater specific surface area, which demands more water. The agglomeration resulted in more empty gaps between the grains. In addition, mixtures flowability increased with the increase of the stone powder content. As the excess water is responsible for mixture lubrication, a higher packing density for a given volume of water improves the flowability.


2016 ◽  
Vol 866 ◽  
pp. 37-42
Author(s):  
B. Kondraivendhan

In this study the effect of age, w/c ratio on mean distribution radius and dispersion of pores in Ordinary Portland Cement (OPC) sand mortar was determined through Mercury Intrusion Porosimetry (MIP) test. For this purpose the cement sand mortar specimens were prepared from two different types of OPC with varied w/c ratios such as 0.2, 0.3, 0.4, 0.5 and 0.6 and tested at different curing ages from 1 day to 90 days. Separate relationships relating the mix parameters such as w/c ratio and age with mean distribution radius (r0.5) and coefficient (d) representing dispersion of pores, are developed for OPC sand mortars.


2013 ◽  
Vol 539 ◽  
pp. 55-59
Author(s):  
Yi Chen ◽  
Wu Yao ◽  
Dan Jin

Mineral additions such as fly ash and silica fume are industrial by products, and play an important role in properties improvement for construction materials. In this work, the shrinkage of cement paste blended with fly ash and silica fume by different substitute ratio was studied. Pore structures of specimens at different ages were determined by mercury intrusion porosimetry (MIP) and shrinkage deformation was measured by standard shrinkage tests. The effects of mineral addtions on shrinkage were discussed. The results show that the fly ash was significantly effective on shrinkage at early ages. Based on the research, several suitable advices were offered to optimize the performances of materials and reduce the shrinkage.


2014 ◽  
Vol 1000 ◽  
pp. 314-317 ◽  
Author(s):  
Ladislav Pařízek ◽  
Eva Bartoníčková ◽  
Vlastimil Bílek Jr. ◽  
Jiří Kratochvíl

High energy requirements and the resulting economic demands due to the production of Portland cement leads to tendency to replace a portion of cement with secondary raw materials or to use other alternative binders. Among the commonly used cements replacements is currently fly ash which is produced during the coal combustion. In this paper the influence of cement/ash ratio in a paste on paste’s porosity is investigated using mercury intrusion porosimetry.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4863
Author(s):  
Won Jung Cho ◽  
Min Jae Kim ◽  
Ji Seok Kim

Pore structure development in Portland cement, fly ash, or/and ferronickel slag (FNS) was investigated using mercury intrusion porosimetry and X-ray CT tomography. The progress of hydration was observed using X-ray diffraction (XRD) analysis and compressive strength while durability of concrete was monitored by chloride penetration resistance and chloride profiles. Mercury intrusion porosimetry (MIP) results suggested that the blended cement had a higher porosity while lower critical pore size. The major reason to this increased porosity was the formation of meso and micro pores compared to ordinary Portland cement (OPC). In terms of chloride transport, replaced cement, especially ternary-blended cement had higher resistance to chloride transport and exhibited slightly lower development of compressive strength. X-ray CT tomography shows that the influence of pore structure of ternary-blended cement on the ionic transport was strongly related to the pore connectivity of cement matrix.


Sign in / Sign up

Export Citation Format

Share Document