scholarly journals Shear Block Test Performance of Melunak and Mengkulang

2018 ◽  
Vol 7 (3.11) ◽  
pp. 210 ◽  
Author(s):  
Nor Jihan Abd Malek ◽  
Rohana Hassan ◽  
Azmi Ibrahim ◽  
Mohammed Hasan Alhebshi

This paper presented results of shear block test performance of tropical glued-laminated timber (glulam) from species of melunak and mengkulang. Glulam blocks were manufactured in accordance with MS758:2001. The shear block test for glue lines and the shear strength tests of melunak and mengkulang were conducted and evaluated in accordance with BS EN 14080:2013. Melunak and mengkulang produced average shear strength values of 10.62 N/mm2 and 8.19 N/mm2, respectively. In terms of wood and glue failure percentage, the results showed that melunak and mengkulang were mainly failed due to wood surface area and not due to the glue lamination in which both melunak and mengkulang showed a good bonding performance. 

TAMAN VOKASI ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 182
Author(s):  
Agus Priyanto

Abstracts. The supply of wood that is quite durable and of high quality has not been able to meet the needs of building construction at the present time, especially in the future. Sengon wood (Paraserianthes falcataria) is a fast-growing type of plant that has a large increase (volume of wood per hectare per year) which is around 28 - 48 m3 / ha / year. To fulfill various human objectives, the majority of Sengon wood can be collected from the age of 6 years. With the use of lamination technology, wood remnants can be utilized to be made into wooden blocks of various sizes and various shapes. Lamination can make the strength of Sengon wood higher than solid wood beams.The test is carried out by physical and mechanical tests as well as the Sengon wood laminated sliding block test. In testing physical and mechanical properties based on ISO 1975 regulations. Testing of physical properties of Sengon wood includes wood density test and moisture content test. Testing the mechanical properties of Sengon wood includes fiber parallel compressive strength test, fiber perpendicular compressive strength test, tensile strength test, shear strength test and flexural strength test. Testing of Sengon wood laminated sliding blocks to determine the strength of lamination has a variation of 30 MDGL, 40 MDGL and 50 MDGL slurry adhesives with 3 replications of each shear test.The average density of Sengon wood is 0.315 t / m3 and the average moisture content of Sengon wood is 13.539%. The average compressive strength of fibers is 26.85 MPa and the compressive strength of fibers is 9.62 MPa. The average tensile strength of Sengon wood is 61.48 MPa and the average shear strength of Sengon wood is 5.31 MPa. In testing the flexural strength of Sengon wood an average of 43.18 MPa. Testing of Sengon wood laminate sliding block for 30 / MDGL obtained an average of 0.05 kg / mm2. In the shear block 40 / MDGL obtained an average shear strength of 0.02 kg / mm2. For the 50 / MDGL laminate shear block an average shear strength of 0.08 kg / mm2 was obtained.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5725-5736
Author(s):  
André M. A. Dias ◽  
Carlos E. J. Martins ◽  
Alfredo M. P. G. Dias

Glued laminated timber (glulam) is a wood-based product with frequent use in timber construction. Maritime pine (Pinus pinaster Ait.) is a species suitable for glulam production and is available with abundance in Portuguese forests. This study assessed the influence of the phase in which the preservative treatment is applied in the surface bonding performance. Several elements were produced considering different treatment scenarios: timber without treatment, timber treated before gluing, and timber treated after gluing. The bonding quality was tested by both shear strength and delamination tests, following the indications given in EN 14080 (2013). Glulam elements treated after gluing (TAG) presented less delamination when compared with the ones treated before gluing (TBG). However, TBG elements presented higher shear strength values than TAG elements. Despite the recorded differences, all the considered sets performed adequately both for delamination and shear strength tests.


2015 ◽  
Vol 1101 ◽  
pp. 99-103
Author(s):  
Cheng Yen Wang ◽  
Ren Kae Shiue

The purpose of this research is focused on vacuum furnace brazing Incoloy 800 (IN-800) using the copper filler foil. Microstructural evolution and shear strength of brazed joints for various brazing conditions has been evaluated in the experiment. The Cu-rich matrix dominates entire brazed joint. The width of Cu-rich matrix is decreased with increasing the brazing temperature and/or time. Average shear strength of the joint is approximately 215 MPa. Dimple dominated fracture is widely observed for the specimen brazed below 1160oC. However, cleavage dominated fracture is found for the specimen brazed at 1200oC. It is advised that copper brazing IN-800 alloy should be confined below 1160oC.


Author(s):  
Xiulin Yan ◽  
Ruiqian Zhang ◽  
Yan Liu ◽  
Yunhua Zhang ◽  
Hui Chen

Cr coating on Zr-based fuel tubes is a potential approach for the development of accident tolerant fuels (ATF). To settle the cracking behavior and quantitative evaluation of shear strength of Cr coating under different loading conditions, the average shear strength between Cr coating and zircaloy substrate has been estimated using a modified shear-lag model in this paper. Its key parameters are determined experimentally, and the tensile method has been used to research the cracking behavior of Cr coating under different strain rates. The results show that with the increase of strain rate, the interfacial shear strength increases because of the decrease of cracking spacing, while the shear strength changes erratically with the coating thickness increases. Furthermore, abundant two unequal-crack-spacings and few two equal-crack-spacings are observed which are perpendicular to the loading direction.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 283 ◽  
Author(s):  
Chieh Lin ◽  
Ren-Kae Shiue ◽  
Shyi-Kaan Wu ◽  
Huai-Li Huang

Infrared vacuum brazing of CoCrFeMnNi high entropy alloy (HEA) using BNi-2 and MBF601 fillers has been investigated. Both brazes show poor wettability at temperatures only 20 °C above their liquidus temperatures. However, the wettability of BNi-2 and MBF601 fillers on CoCrFeMnNi HEA is greatly improved with increasing the test temperatures, 50 °C above their liquidus temperatures. The BNi-2 brazed joints are dominated by Ni-rich matrix with huge CrB and a few tiny boride precipitates. Average shear strengths of joints increase with increasing brazing temperature and/or time, and fracture location changes from blocky CrB in the brazed zone to grain boundary boride in the substrate. The MBF601 brazed joints are composed of CoCrFeMnNi-based matrix, particles of B/Co/Cr/Fe/Mn/Ni/P compounds, and some phosphides form along the grain boundaries of the substrate. The specimen brazed with MBF601 filler foil at 1050 °C for 600 s has the highest average shear strength of 321 MPa, while that brazed at 1080 °C for 600 s has a lower average shear strength of 271 MPa due to the presence of solidification shrinkage voids.


1996 ◽  
Vol 458 ◽  
Author(s):  
Y. Morizono ◽  
M. Nishida ◽  
A. Chiba

ABSTRACTBonding characteristics and interfacial microstructures in explosively welded Ti/stainless steel clad of the as-welded and annealed states were investigated. In case of Ti/SUS430 ferritic stainless steel combination, the average shear strength of an as-welded clad was 555 MPa, and metastable phases such as amorphous and fine crystalline phases were observed at the interface. These were considered to be the trace of melting and subsequently rapid solidification at the contact surface of both the parent materials. By annealing below 1173 K, the strength gradually decreased with increasing holding time. The average shear strength of the clad annealed at 1073 K for 360 ks was 242 MPa, while that of the clad annealed at 1273 K abruptly decreased down to 107 MPa with increasing holding time up to 360 ks. The reaction layer formed at the interface consisted only of TiC in the former. On the other hand, the coexistence of TiC, TiFe, TiFe2 and χ was observed at the interface in the latter. The TiC in the former was considered to serve as a barrier for diffusion of Ti, Fe and Cr across the interface and to suppress the formation of intermetallic compounds. As a result, the growth of reaction layer was inhibited and high bonding strength was preserved even after prolonged annealing. The results of the Combination of Ti and SUS304 austenitic stainless steel were also discussed.


Holzforschung ◽  
2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Amir Sahaf ◽  
Karl Englund ◽  
Marie-Pierre G. Laborie

Abstract The development of adhesives that have good initial adhesion (tack) that provides improved mat integrity during shape-forming of wood composites has been the subject of recent research. Hybrid adhesives were made based on thermosetting phenol-formaldehyde (PF), to which three tacky adhesives were added: high tack fish glue (FG), dextrin glue (DX) and a commercial acrylic, pressure-sensitive adhesive (PSA). Tacky adhesives were blended with PF at weight levels of 25%, 50% and 75%. The time-dependent tack development of the resulting hybrid adhesives was evaluated by means of a texture analyzer. The bond strength of adhesives was measured after curing by shear block test. PF/DX blends exhibited the highest tack during longer open times, while blends of PF and FG had low tack during shorter times. PF/PSA blends lost their bond strength completely after being heated at the curing temperature of PF. PF/FG blends did not show a significant decrease in bond strength compared to pure PF. The addition of DX had no effect on shear strength at ratios <75%.


2022 ◽  
Vol 119 (1) ◽  
pp. 106
Author(s):  
Mei Yang ◽  
Shuang Li ◽  
Xianju Zhang ◽  
Honglang Yang ◽  
Liping Nie ◽  
...  

Titanium alloy is an important metal material with excellent specific strength, which is widely used in aerospace field, nuclear industry, chemical medicine, and military industry. In order to investigate the connection conditions of TC4 titanium alloy and 316L stainless steel at different temperatures, the braze welding measurement with Ti57Zr13Cu21Ni9 filler metal was conducted in vacuum. The microstructure, morphology and phase of the joint were characterized by SEM (scanning electron microscope), EDS (Energy Dispersive Spectrometer) and XRD (X-ray diffraction), respectively. Microhardness and shear strength of the joint at room temperature and the bonding mechanism of TC4 and 316L were also investigated. The obtained results revealed that the main phases in the diffusion layer were Ti-based solid solution and Ti-Fe (TiFe and TiFe2) intermetallic compoundsands (IMCs) the center of the braze was mainly composed of Ti-Fe IMCs, (Ti, Zr)2(Ni, Cu), Ti-based solid solution. Additionally, the increase of brazing temperature firstly increased and then decreased the average shear strength with the maximum value of 133.9 MPa at 960 °C.


Author(s):  
Sandeep Mallampati ◽  
Liang Yin ◽  
David Shaddock ◽  
Harry Schoeller ◽  
Junghyun Cho

Predominant high melting point solders for high temperature and harsh environment electronics (operating temperatures from 200 to 250°C) are Pb-based systems, which are being subjected to RoHS regulations because of their toxic nature. In this study, high bismuth (Bi) alloy compositions with Bi-XSb-10Cu (X from 10 wt.% to 20 wt.%) were designed and developed to evaluate their potential as high-temperature, Pb-free replacements. Reflow processes were developed to make die-attach samples made out of the cast Bi alloys. In particular, die-attach joints made out of Bi-15Sb-10Cu alloy exhibited an average shear strength of 24 MPa, which is comparable to that of commercially available high Pb solders. These alloy compositions also retained original shear strength even after thermal shock between −55°C and +200°C and high temperature storage at 200°C. Brittle interfacial fracture sometimes occurred along the interfacial NiSb layer formed between Bi(Sb) matrix and Ni metallized surface. In addition, heat dissipation capabilities, using flash diffusivity, were measured on the die-attach assembly, compared to the corresponding bulk alloys. The thermal conductivity of all the Bi-Sb alloys was higher than that of pure Bi. By creating high volume fraction of precipitates in a die-attach joint microstructure, it was feasible to further increase thermal conductivity of this joint to 24 W/m·K, which is three times higher than that of pure Bi (8 W/m·K). Bi-15Sb-10Cu alloy has so far shown the most promising performance as a die-attach material for high temperature applications (operated over 200°C). Hence, this alloy was further studied to evaluate its potential for plastic deformation. Bi-15Sb-10Cu alloy has shown limited plastic deformation in room temperature tensile testing, in which premature fracture occurred via the cracks propagated on the (111) cleavage planes of rhombohedral crystal structure of the Bi(Sb) matrix. The same alloy has, however, shown up to 7% plastic strain under tension when tested at 175°C. The cleavage planes, which became oriented at smaller angles to the tensile stress, contributed to improved plasticity in the high temperature test.


2011 ◽  
Vol 418-420 ◽  
pp. 792-795
Author(s):  
Xian Xie ◽  
Gao Feng Quan ◽  
Xiue Gu ◽  
Xing Ming Liu ◽  
Jia Le Sun

The brazing process of magnesium alloy AZ31 was studied, and the mechanical properties of the weld were examined, and the main factors were analyzed through brazing furnace tests in this work. Only with the protection of self-made brazing flux, a lap joint with the average shear strength of 30MPa could be obtained in an ordinary resistance furnace without inert gas protection, which is much better than that without flux in which the shear strength is lower than 10MPa.


Sign in / Sign up

Export Citation Format

Share Document