scholarly journals Production and Optimization of Pectinase from Pectinolytic Fungi Cultivated on Mango peels and Pectin Subjected to Submerged Fermentation

2021 ◽  
Vol 10 (1) ◽  
pp. 15-21
Author(s):  
Kelemu Mulluye ◽  
Ameha Kebede ◽  
Negussie Bussa

Pectinases are the group of enzymes that degrade pectin. This study was conducted with the aim of isolation of efficient pectinase producing pectinolytic fungi from the decomposing mango peels using extracted mango peels pectin as a growth substrate under submerged fermentation, determining optimum pectinase production conditions with regards to some physicochemical parameters. The organisms were screened for the production of pectinase using Pectin agar media, and the two active pectinolytic fungi (P1 and P2) were isolated. pectinase production media was later used for the Lab scale production of pectinase by inoculating p1 and p2 and incubating for 7 days. The enzyme was extracted after seven days of fermentation and every day tested for their pectinolytic activity. P2 showed relatively higher pectinolytic activity and was therefore used for further studies. P2 was inoculated into a broth containing mango pectin under submerged fermentation. Results indicate that a pectin yield of mango peel 17.75%. Different parameters optimization processes were investigated on submerged fermentation namely pH, incubation period, temperature and substrate concentration optima were found 6, 4 days, 35oC and 1.5% respectively. The result suggests that mango peels have high pectin content and can be used for the value-added synthesis of pectinase.

2019 ◽  
Vol 01 (03) ◽  
pp. 23-36
Author(s):  
Amna Yaqoob ◽  
Fatima Amanat ◽  
Asif Ali ◽  
Muhammad Sajjad

Pectinases are pectin degrading enzymes predominantly used as biocatalysts in various industries such as wine extraction, fruit juice extraction, and making of paper pulp. Large scale production of pectinases using biological systems (bacteria, fungi, plants) is a common method used in the industry. In the current study, different bacterial isolates obtained from rotten apples were used for pectinase production and their pectinolytic activity was investigated. Five bacterial strains were isolated on the growth medium containing 0.3% KH2PO4, 0.6% Na2HPO4, 0.2% NH4Cl, 0.5% NaCl, 1% Pectin, 1.5% Agar, 1mM CaCl2, and 10mM MgSO4. The isolates of five samples A, B, C, D and E were then biochemically characterized as Serratia marcescens, Klebseilla pneumoniea, Pseudomonas aeruginosa and Escherichia coli, respectively. They were also identified at the molecular level through 16S rRNA gene sequencing.


2011 ◽  
Vol 37 (5) ◽  
pp. 567-572
Author(s):  
G. Gantioque Geraldine ◽  
Lu ZENG ◽  
Yan-bin XIA

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 627
Author(s):  
Malaiporn Wongkaew ◽  
Bow Tinpovong ◽  
Korawan Sringarm ◽  
Noppol Leksawasdi ◽  
Kittisak Jantanasakulwong ◽  
...  

Pectin recovered from mango peel biomass can be used as a potential source for pectic oligosaccharide hydrolysate with excellent probiotic growth-enhancing performance and prebiotic potentials. Consequently, the objectives of the current study were to optimise the enzyme hydrolysis treatment of mango peel pectin (MPP) and to evaluate the pectic oligosaccharide effects of Lactobacillus reuteri DSM 17938 and Bifidobacterium animalis TISTR 2195. Mango of “chok anan” variety was chosen due to its excessive volume of biomass in processing and high pectin content. The optimal treatment for mango peel pectic oligosaccharide (MPOS) valorisation was 24 h of fermentation with 0.3% (v/v) pectinase. This condition provided small oligosaccharides with the molecular weight of 643 Da that demonstrated the highest score of prebiotic activity for both of B. animalis TISTR 2195 (7.76) and L. reuteri DSM 17938 (6.87). The major sugar compositions of the oligosaccharide were fructose (24.41% (w/w)) and glucose (19.52% (w/w)). For the simulation of prebiotic fermentation, B. animalis TISTR 2195 showed higher proliferation in 4% (w/v) of MPOS supplemented (8.92 log CFU/mL) than that of L. reuteri (8.53 CFU/mL) at 72 h of the fermentation time. The main short chain fatty acids (SCFAs) derived from MPOS were acetic acid and propionic acid. The highest value of total SCFA was achieved from the 4% (w/v) MPOS supplementation for both of B. animalis (68.57 mM) and L. reuteri (69.15 mM). The result of this study therefore conclusively advises that MPOS is a novel pectic oligosaccharide resource providing the opportunity for the sustainable development approach through utilising by-products from the fruit industry.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3503
Author(s):  
Bao-Hong Lee ◽  
Wei-Hsuan Hsu ◽  
Chih-Yao Hou ◽  
Hao-Yuan Chien ◽  
She-Ching Wu

Mango peels are usually discarded as waste; however, they contain phytochemicals and could provide functional properties to food and promote human health. This study aimed to determine the optimal lactic acid bacteria for fermentation of mango peel and evaluate the effect of mango peel on neuronal protection in Neuron-2A cells against amyloid beta (Aβ) treatment (50 μM). Mango peel can be fermented by different lactic acid bacteria species. Lactobacillus acidophilus (BCRC14079)-fermented mango peel produced the highest concentration of lactic acid bacteria (exceeding 108 CFU/mL). Mango peel and fermented mango peel extracts upregulated brain-derived neurotrophic factor (BDNF) expression for 1.74-fold in Neuron-2A cells. Furthermore, mango peel fermented products attenuated oxidative stress in Aβ-treated neural cells by 27%. Extracts of L. acidophilus (BCRC14079)-fermented mango peel treatment decreased Aβ accumulation and attenuated the increase of subG1 caused by Aβ induction in Neuron-2A cells. In conclusion, L. acidophilus (BCRC14079)-fermented mango peel acts as a novel neuronal protective product by inhibiting oxidative stress and increasing BDNF expression in neural cells.


2013 ◽  
Vol 48 (1) ◽  
pp. 25-32 ◽  
Author(s):  
S Islam ◽  
B Feroza ◽  
AKMR Alam ◽  
S Begum

Pectinase activity among twelve different fungal strains, Aspergillus niger IM09 was identified as a potential one to produce maximal level 831 U/g at pH 4.0. Media composition, incubation temperature, incubation time, substrate concentration, aeration, inoculum size, assay temperature and nitrogen sources were found to effect pectinase activity. Moisture content did not affect the activity significantly. Media composition was varied to optimize the enzyme production in solid state fermentation. It was observed that the highest pectinase activity of 831.0 U/g was found to produce in presence of yeast extract as a nitrogen source in combination with ammonium sulfate in assay media. Aeration showed positive significant effects on pectinase production 755 U/g at 1000 ml flasks. The highest pectinase production was found at 2 g pectin (521 U/g) used as a substrate. Pectinolytic activity was found to have undergone catabolite repression with higher pectin concentration (205 U/g at 5 g pectin). The incubation period to achieve maximum pectinase activity by the isolated strain Aspergillus niger IM09 was 3 days, which is suitable from the commercial point of view. DOI: http://dx.doi.org/10.3329/bjsir.v48i1.15410 Bangladesh J. Sci. Ind. Res. 48(1), 25-32, 2013


2006 ◽  
Vol 7 (3) ◽  
pp. 155-162
Author(s):  
Zdenek Wegscheider ◽  
Mojmir Sabolovic

During the past two decades academia, industry and government have aimed more and more their attention to the phenomenon of a biobased economy providing society with non‐food biobased products. Now developing are biomass industries that make an array of commercial products, including fuels, electricity, chemicals, adhesives, lubricants and building materials, as well as new clothing fibers and plastics. Instead of fossil resources “green” biobased economy uses renewable grown or waste biomass. The lead supplying role to the biobased economy is held by a sector of agriculture, above all the crop production. In this manner an effective limitation of food surplus may occur in the EU market and enhance a value added to all vertical industry. Industrial‐scale production of biobased materials in time with consumers’ changing attitudes towards sustainable economic and social development may affect a wide array of consequences which nowadays can be tediously estimated. Food safety along with food security is one of the hottest issues especially in the United States, knowing that human population and biobased economy compete in using and processing a broad range of agricultural crops. An energy analysis aspect of this caloric relationship among agricultural sector on the supply side and human population and biobased economy on the other – demand side is assumed to represent the principal aim of this study. Consequently, there is the need to evaluate whether a quantity of Czech Crop Output Total is possible to nourish the Czech population and whether there is an available caloric surplus suitable as a biomass resource for biobased economy which is actually taking root.


Food Research ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 1995-2002
Author(s):  
W.Y.C. Lim ◽  
N.L. Yusof ◽  
Ismail-Fitry M.R. ◽  
N. Suleiman

The aim of this study was to develop an efficient, reliable, and sustainable technology for the recovery of value-added compounds from by-product, in this case, is watermelon rinds. The properties of the watermelon rinds obtained from innovative ultrasoundassisted extraction (UAE) were evaluated. In regard to this, the pectin content, degree of esterification, and galacturonic acid content of the watermelon rind extracts were determined in order to verify the efficiency of the UAE. Initially, the UAE were conducted using two types of acid: citric and hydrochloric. The highest pectin content was obtained using citric acid. Additional UAE was then performed with citric acid at 50, 60, or 70°C for 10, 20, or 30 mins. Both UAE temperature and time significantly influenced the pectin extracts and galacturonic acid. The best findings for a high galacturonic acid content (47.41%) when the watermelon rinds were extracts at 70°C for 20 mins. According to the findings, the extraction process lasted 10 or 20 mins at all temperatures was mainly high-methoxyl pectin, which can form gels under acidic conditions. This suggests that pectins derived from watermelon rinds using UAE may be especially useful as an additive in some confectionery products.


Fermentation ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 59 ◽  
Author(s):  
Sudeep KC ◽  
Jitendra Upadhyaya ◽  
Dev Raj Joshi ◽  
Binod Lekhak ◽  
Dhiraj Kumar Chaudhary ◽  
...  

Pectinases are the group of enzymes that catalyze the degradation of pectic substances. It has wide applications in food industries for the production and clarification of wines and juices. The aim of this study was to isolate, screen and characterize pectinase from fungi isolated from various soil samples and evaluate its application in juice clarification. Fungal strains were isolated and screened primarily using 1% citruspectin incorporated potato dextrose agar (PDA) and secondarily using pectinase screening agar medium (PSAM) for pectinolytic organisms. The enzyme was produced by submerged state fermentation and assayed using the dinitro salicylic acid (DNS) method. From 20 different soil samples, 55 fungal isolates were screened primarily and, among them, only 14 isolates were subjected for secondary screening. Out of 14, only four strains showed the highest pectinolytic activity. Among four strains, Aspergillus spp. Gm showed the highest enzyme production at a 48-h incubation period, 1% substrate concentration, and 30 °C temperature. The thermal stability assessment resulted that the activity of pectinase enzyme declines by 50% within 10 min of heating at 60 °C. The optimum temperature, pH, and substrate concentration for the activity of enzyme was 30 °C (75.4 U/mL), 5.8 (72.3 U/mL), and 0.5% (112.0 U/mL), respectively. Furthermore, the yield of the orange juice, the total soluble solid (TSS), and clarity (% transmittance) was increased as the concentration of the pectinase increased, indicating its potential use in juice processing. Overall, the strain Aspergillus spp. Gm was identified as a potent strain for pectinase production in commercial scale.


Microbiology ◽  
2010 ◽  
Vol 79 (3) ◽  
pp. 306-313 ◽  
Author(s):  
N. Martin ◽  
M. A. U. Guez ◽  
L. D. Sette ◽  
R. Da Silva ◽  
E. Gomes

2014 ◽  
Vol 8 ◽  
pp. 65-70 ◽  
Author(s):  
Rajiv Dhital ◽  
Om Prakash Panta ◽  
Tika Bahadur Karki

Pectinase are the group of enzymes that catalyze the degradation of pectin substances through de-polymerisation and de-esterification. This study is concerned on the isolation, screening and selection of suitable strain of pectinolytic organism and optimization of cultural conditions for the biosynthesis of pectinase. From the soil samples collected from Lalitpur, Kathmandu, Gulmi, Manang and Dang, 18 fungal colonies were isolated on the basis of halozone formation on Potato dextrose agar and identified. Enzyme production was carried out by submerged state fermentation. The partially purified enzymes showing higher pectinolytic activity were characterized on the basis of temperature of incubation, substrate concentration and pH of the substrate by Dinitro salicylic acid assay (DNSA) method. The fungal isolate showing highest enzyme activity was subjected to optimization of culture medium for the production of enzymes. On optimization, it was found that MG1 (Aspergillus niger) was the most potent strain at 1.5% substrate (pectin) concentration, pH 4.5 and temperature of 30°C. On the enzyme application, the yield of the orange juice, Total Soluble Solid and absorbance increased as the concentration of the enzyme increased and hence increasing the possibility of being used commercially for maximum pectinase production. DOI: http://dx.doi.org/10.3126/jfstn.v8i0.11752 J. Food Sci. Technol. Nepal, Vol. 8 (65-70), 2013


Sign in / Sign up

Export Citation Format

Share Document