scholarly journals Studies of Body Weight/Heart Weight [C/S] Ratio in Treated and Untreated Experimental Pulmonary Barotrauma

2019 ◽  
Vol 69 (4) ◽  
pp. 63-70
Author(s):  
Piotr Siermontowski ◽  
Wojciech Kozłowski ◽  
Katarzyna Pleskacz

AbstractThe prerequisite of development of pulmonary barotrauma [PB] is retention of the breathing mix in the lungs during a sudden decrease in external pressure or its administration into the airways under increased pressure or in a volume exceeding the maximum lung capacity. In such cases, the pulmonary parenchyma ruptures and air enters both the pleural cavity and/or the lumen of ruptured blood vessels located in the alveolar septa. The result is permanent disruption of the pulmonary parenchyma.The aim of the study was to assess the influence of post-PB lesions on the heart muscle and the importance of hyperbaric treatment on the exacerbation of such lesions in the heart. The hearts of 35 rabbits were used in the study. In animals of the experimental group, PB was induced in the pressure chamber using the proprietary method described in previous publications. Part of the animals in this group were treated with air hyperbaria. The comparison group consisted of animals, which did not undergo PB during a simulated dive. All animals were weighed, observed for four weeks and then put to death following the experiment. In autopsy, among others, whole hearts were collected and weighed after fixation. Subsequently, the C/S ratio, i.e. the body to heart weight ratio, was calculated. The measurement results were subject to statistical analysis. A statistically significant increase in the C/S ratio was found, indicating an increase in the share of heart weight in the total body weight in the group of animals with PB not treated with air hyperbaria as compared to the control group.

2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Man Zhu ◽  
Lijun Shi

Objective The type II calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) signal plays a key role in the development of cardiac hypertrophy. This study used CaMKIIδ as an entry point to investigate the mechanism of moderate-intensity aerobic exercise affecting myocardial function. Methods Male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs), 12 weeks age, were randomly divided into aerobic exercise group (SHR-EX/WKY-EX) and sedentary control group (SHR-SED/WKY-SED), with 12 rats in each group. The aerobic exercise group conducted an 8-week treadmill exercise training with a slope of 0°, 20m/min (about 55-65% of maximal aerobic velocity), 60min/day, and 5d/wk. The control group did not exercise. The body weight of each group of rats was measured weekly and the blood pressure of the rats was measured non-invasively. After 8 weeks, the hearts of SHR-EX group, WKY-EX group, SHR-SED group and WKY-SED group were weighed, and then myocardial tissue sections were taken for HE staining to observe the thickness of the ventricular wall and the morphology of myocardial cells. The expression of CaMKIIδ and MEF2 in each group was determined by Western blotting. Results (1) The body weight of SHR-SED group was significantly higher than that of SHR-EX group (p<0.01), and the heart weight of rats in exercise group changed significantly. The WKY-EX group had greater heart weight than the WKY-SED group, and the SHR-SED group was heavier than the SHR-EX group (p<0.05). The heart weight/body weight ratio of the WKY-EX group was significantly higher than that of the WKY-SED group (p<0.01). The heart weight/body weight ratio of SHR-EX group and SHR-SED group was higher than that of WKY-EX group and WKY-SED group (p<0.01). (2) Compared with the WKY-SED group, the SHR-SED group had loose interstitial cells and increased single cell area. The SHR-EX group is more compact than the SHR-SED group, and the cell cross-sectional area is reduced. (3) The expression of CaMKIIδ protein in SHR-EX group was significantly lower than that in SHR-SED group (p<0.01), but the expression level of CaMKIIδ in WKY-EX group was significantly higher than that in WKY-SED group (p<0.01). The expression level of CaMKIIδ was significantly higher in the SHR-SED group than in the WKY-SED group. In addition, the expression of MEF2 protein in SHR-EX group and WKY-SED group was significantly lower than that in SHR-SED group (p<0.01), while the MEF2 expression level in WKY-EX group was higher than WKY-SED group and SHR-EX group (p<0.05). Conclusions There is an interaction between aerobic exercise and hypertension. Aerobic exercise can effectively delay the development of hypertensive cardiac hypertrophy by regulating the expression of CaMKIIδ and MEF2 protein in the myocardium, but it can also cause cardiac hypertrophy in normal heart. It is one of the important mechanisms affecting the myocardial morphology and function.    


2009 ◽  
Vol 24 (4) ◽  
pp. 251-255 ◽  
Author(s):  
Honório Sampaio Menezes ◽  
Cláudio Galeano Zettler ◽  
Alice Calone ◽  
Jackson Borges Corrêa ◽  
Carla Bartuscheck ◽  
...  

PURPOSE: To compare body weight and length, heart weight and length, heart-to-body weight ratio, glycemia, and morphometric cellular data of offspring of diabetic rats (ODR) and of normal rats (control). METHODS: Diabetes was induced in 3 pregnant Wistar rats, bearing 30 rats, on the 11th day after conception by intraperitoneal injection of 50 mg/kg of streptozotocin. Six normal pregnant Wistar rats, bearing 50 rats, made up the control group. Morphometric data were obtained using a scale for the weight, length, heart and body measurements. Morphometric cellular data were obtained by a computer assisted method applied to the measurements of myocytes. Statistical analysis utilized Student's t-test, ANOVA and Levene test. RESULTS: Control offspring had greater mean body weight and length than offspring of diabetic rats (p < 0.001). Heart weight and length and heart-to-body ratios of newborn rats differed between groups at birth (p < 0.001), but showed no difference at 21 days. Mean nuclei area and perimetric value of the myocytes decrees throughout the first 21 days of life (p < 0.01) in the diabetic group. CONCLUSIONS: Heart hypertrophy on the offspring of diabetic rats at birth was demonstrated by the significant difference between the groups. After the eleventh day, no difference was found, which confirmed regression of cardiomegaly. The significant difference between the first and the 21th day of life, for nuclei area feature, demonstrate regression of cardiac hypertrophy in the offspring of diabetic rats.


2016 ◽  
Vol 36 (9) ◽  
pp. 901-909 ◽  
Author(s):  
D Sheela ◽  
R Vijayaraghavan ◽  
S Senthilkumar

Buprenorphine drug cartridge was made for autoinjector device for use in emergency and critical situations to reduce the morbidity and mortality. Water-filled cartridges were prepared and buprenorphine was injected aseptically in the cartridge, to make 0.05 and 0.10 mg/mL. Rats were injected intraperitoneally, buprenorphine (0.3 and 0.6 mg/kg), repeatedly with the autoinjector and compared with manual injection (7 days and 14 days) using various haematological and biochemical parameters. No significant change was observed in the body weight, organ to body weight ratio and haematological variables in any of the experimental groups compared with the control group. Except serum urea and aspartate aminotransferase, no significant change was observed in glucose, cholesterol, triglycerides, bilirubin, protein, albumin, creatinine, uric acid, alanine aminotransferase, gamma glutamyltransferase and alkaline phosphatase. The autoinjectors deliver the drugs with spray effect and force for faster absorption. In the present study, the autoinjector meant for intramuscular injection was injected intraperitoneally in rats, and the drug was delivered with force on the vital organs. No significant difference was observed in the autoinjector group compared to the manual group showing tolerability and safety of the buphrenorphine autoinjector. This study shows that buprenorphine autoinjector can be considered for further research work.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Soheb Anwar Mohammed ◽  
Bugga Paramesha ◽  
Yashwant Kumar ◽  
Ubaid Tariq ◽  
Sudheer Kumar Arava ◽  
...  

Allylmethylsulfide (AMS) is a novel sulfur metabolite found in the garlic-fed serum of humans and animals. In the present study, we have observed that AMS is safe on chronic administration and has a potential antihypertrophic effect. Chronic administration of AMS for 30 days did not cause any significant differences in the body weight, electrocardiogram, food intake, serum biochemical parameters, and histopathology of vital organs. Single-dose pharmacokinetics of AMS suggests that AMS is rapidly metabolized into Allylmethylsulfoxide (AMSO) and Allylmethylsulfone (AMSO2). To evaluate the efficacy of AMS, cardiac hypertrophy was induced by subcutaneous implantation of ALZET® osmotic minipump containing isoproterenol (~5 mg/kg/day), cotreated with AMS (25 and 50 mg/kg/day) and enalapril (10 mg/kg/day) for 2 weeks. AMS and enalapril significantly reduced cardiac hypertrophy as studied by the heart weight to body weight ratio and mRNA expression of fetal genes (ANP and β-MHC). We have observed that TBARS, a parameter of lipid peroxidation, was reduced and the antioxidant enzymes (glutathione, catalase, and superoxide dismutase) were improved in the AMS and enalapril-cotreated hypertrophic hearts. The extracellular matrix (ECM) components such as matrix metalloproteinases (MMP2 and MMP9) were significantly upregulated in the diseased hearts; however, with the AMS and enalapril, it was preserved. Similarly, caspases 3, 7, and 9 were upregulated in hypertrophic hearts, and with the AMS and enalapril treatment, they were reduced. Further to corroborate this finding with in vitro data, we have checked the nuclear expression of caspase 3/7 in the H9c2 cells treated with isoproterenol and observed that AMS cotreatment reduced it significantly. Histopathological investigation of myocardium suggests AMS and enalapril treatment reduced fibrosis in hypertrophied hearts. Based on our experimental results, we conclude that AMS, an active metabolite of garlic, could reduce isoproterenol-induced cardiac hypertrophy by reducing oxidative stress, apoptosis, and stabilizing ECM components.


2021 ◽  
Vol 7 (2) ◽  
pp. 62-68
Author(s):  
Andreas Arie Setiawan ◽  
Fairuz Azmila Purnomo ◽  
Vega Karlowee ◽  
Noor Wijayahadi

ABSTRACTBackground: Obesity is a disorder or disease characterized by the accumulation of excess fat in the body due to an imbalance in energy intake that is used for a long time. Accumulation of fat can reduce adiponectin, causing cardiac hypertrophy, endothelial vasodilation, and other cardiovascular diseases. Black garlic have high antioxidants in the form of S-Allylcysteine(SAC) which functions to increase adiponectin. Objective: To determine the effect of Black garlic on the histopathological picture of the heart and aorta of obese rats. Methods: This study was an experimental study with a randomized post-test only design with control group design with 5 groups of male white rats Sprague Dawley (Rattus novergicus) fed High Fat Fructose. Diet (HFFD) enriched with 1.25% cholesterol and 0.5% cholic acid for 8 weeks and was given black garlic intervention at doses of 450 mg / 200BW, 900mg / 200BW and 1350mg200 / BW for 4 weeks. Results: Giving black garlic significantly reduced body weight of rats (p = 0.001), and the results did not significantly reduce heart weight (p = 0.147), aortic weight (p = 0.061), histopathological changes in heart wall thickness (p = 0.423) and aortic wall thickness (p = 0.802). The effective doses of black garlic in this study were 450 mg / 200 grams BW, 900 mg / 200 grams rat BW and 1350 mg / 200 grams BW of rats. The optimal dose is 900 mg / 200 grams BW. Conclusion: Black garlic gave a significant reduction in body weight of rats and no significant reduction in heart weight, aortic weight, cardiac and aortic histopathological features. 


1994 ◽  
Vol 87 (2) ◽  
pp. 239-243 ◽  
Author(s):  
Stephen B. Harrap ◽  
Shari R. Datodi ◽  
Emma K. Crapper ◽  
Leon A. Bach

1. Growth hormone may influence cardiac growth during post-natal maturation or in response to hypertension, and the growth-hormone deficient dwarf rat model offers an opportunity to study this question. 2. We compared the blood pressure and heart weight of dwarf rats and Fischer (F344) control rats in early adulthood, after two hypertensive stimuli: unilateral renal ischaemia (two-kidney, one-clip) or the administration of deoxycorticosterone acetate and saline drinking fluid. 3. In untreated animals at 13 weeks of age the body weight of dwarf rats was significantly less than that of F344 rats, but the mean arterial pressure was similar. Although the hearts of dwarf rats were smaller than those of F344 rats, the heart weight/body weight ratio was significantly greater in dwarf rats. 4. Both dwarf and F344 rats developed similar hypertensive mean arterial pressures 5 weeks after left renal artery clipping or treatment with deoxycorticosterone acetate salt. The heart weights of hypertensive dwarf and F344 rats were equivalent, indicating a proportionally greater increase in cardiac size in dwarf rats for the same rise in blood pressure. 5. The plasma insulin-like growth factor-I level was markedly lower in dwarf than in F344 rats, and hypertension did not have any significant effects on these levels. 6. These findings indicate that the developmental increase in blood pressure and heart size in growing animals and the adaptive cardiac hypertrophy accompanying hypertension are not affected by growth hormone deficiency.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Kohei Okamoto ◽  
Hideki Fujii ◽  
Shunsuke Goto ◽  
Keiji Kono ◽  
Kentaro Watanabe ◽  
...  

Abstract Background and Aims Left ventricular hypertrophy (LVH) is a clinically important risk factor for mortality and often observed in patients with chronic kidney disease (CKD). Serum FGF23 levels are elevated in CKD patients, and the relationship between elevated FGF23 and LVH has been reported in the previous studies. However, whether elevated FGF23 is a cause or result of LVH and whether FGF23 directly or indirectly affects LVH remain unclear. Therefore, we investigated changes in heart weight, CKD-mineral and bone disorder (MBD) parameters, including FGF23, and renin-angiotensin-aldosterone system (RAAS) related-factors in the setting of LVH and CKD using a mouse model. Method In the present study, twenty-four C57BL/6J mice were used and divided into 4 groups; control group (N=6), CKD group (N=6), LVH group (N=6), and LVH+CKD group (N=6). The mice in the CKD group underwent left 2/3 nephrectomy at 11 weeks of age and right nephrectomy at 12 weeks of age. Those in the LVH group underwent transverse aortic constriction (TAC) at 10 weeks of age. Those in the LVH+CKD group, TAC at 10 weeks of age, and left 2/3 nephrectomy at 11 weeks of age, and right nephrectomy at 12 weeks of age were performed. At 16 weeks of age, echocardiography was performed for all the mice, and they were sacrificed for blood and urine analysis, histopathological analysis and evaluating mRNA expressions of CKD-MBD- and RAAS-related factors in the heart. Results The systolic blood pressure was significantly higher in the LVH+CKD group and the CKD group than in the control group. The heart weight/body weight ratio in the LVH+CKD group was the highest, and that in the LVH was higher than that in the CKD group. Although serum creatinine and phosphate levels increased in CKD condition, those were comparable between the CKD and LVH+CKD groups. The urinary albumin excretion also increased in the CKD and LVH+CKD groups compared to the LVH and control groups. Serum FGF23 levels increased in the LVH and CKD group compared to the control group, and those in the LVH+CKD group were the highest among all the study groups. The cardiac mRNA expressions of FGF23, angiotensinogen (ANG), angiotensin type 1 receptor (AT1R), and angiotensin-converting enzyme (ACE) were also increased by induction of LVH and CKD, and those in the LVH+CKD group significantly increased compared to other groups. Heart weight/body weight ratio was significantly correlated with serum FGF23 levels and mRNA expression of FGF23, ANG, AT1R, ACE. In addition, significant correlations of serum FGF23 levels and cardiac mRNA expression of FGF23 with cardiac mRNA expressions of RAAS-related factors were observed. Conclusion Our results suggest that serum FGF23 levels and cardiac mRNA expression of FGF23 increase with the development of LVH and CKD and the changes is possibly enhanced through the colocalized activation of RAAS.


2019 ◽  
Vol 20 (1) ◽  
pp. 62-66
Author(s):  
Magdy Amer

This study was performed on to evaluate the effect of some probiotic strains (Pediococcus acidophilus and Pedicoccus pentosaceus) on performance, blood picture and some biochemical parameters in serum of treated calves (10 weaned calves 90-115 kg). Calves were classified into 2 equal groups (each of 5 calves). The 1st group was served as the control group while the second group was given Maxboost® (20gm/head/day) in drinking water (after fermentation for 2-3 hours) for five months. Calves were weighed monthly to calculate the body weight gain till the end of the experiment whole blood weight and serum were collected from both groups at 1st, 2nd, 3rd, 4th and 5th month. Results revealed a significant increase in total body weight, body gain, total erythrocytes count, hemoglobin content, total leucocytes count, total protein and mean corpuscular hemoglobin. On the other hand, there were a significant decrease in serum aspartate transaminase (AST), serum alanine transaminase (ALT) and urea in pediococcus treated group compared to the control one.


2017 ◽  
Vol 6 ◽  
Author(s):  
Wei Wang ◽  
Melissa Brooks ◽  
Cari Gardner ◽  
Norton Milgram

AbstractNutritional factors can dramatically affect development of young animals during the early stage of life. The objective of the present study was to examine the effects of a neuroactive nutritional supplement (NNS) containing DHA, taurine, carotenoids and vitamins on the body weight and body composition of growing puppies. A total of twenty-four 2-month-old Beagles were fed a nutritionally complete and balanced base diet and a control supplement daily during an initial 1-month baseline assessment, after which they were divided into control and treatment groups. They were fed daily either control or treatment supplements in addition to the base diet from 3 to 12 months of age. Lean body mass and fat mass were assessed using quantitative magnetic resonance scans at 0 (baseline), 3, 6 and 9 months of treatment. Total body weight and lean body mass did not differ between groups over time. The puppies in the treatment group showed a trend of reduced fat gain compared with those in the control group, and with a marginally significant difference at 6 months (P = 0·05). At 3 months, insulin-like growth factor 1 was higher (P = 0·02) in the treatment group compared with the control group. At 9 months, fasting lipid levels were lower (P < 0·05) and fat-oxidation metabolite 3-hydroxybutyrate was higher (P < 0·05) in the treatment group compared with the control group. These results may indicate that NNS has an impact on puppy growth and development, possibly by promoting fat metabolism; further investigation would be necessary to determine the full impact of this supplement on growth and development.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qianqian Tang ◽  
Mengjiang Lu ◽  
Bin Xu ◽  
Yaling Wang ◽  
Shengfeng Lu ◽  
...  

BackgroundPrevious studies had suggested that electroacupuncture (EA) can promote white adipose tissue (WAT) browning to counter obesity. But the mechanism was still not very clear.AimIn this study, we aim to study the effect of EA on promoting inguinal WAT (iWAT) browning and its possible mechanism.MethodThree-week-old rats were randomly divided into a normal diet (ND) group and a high-fat diet (HFD) group. After 10 weeks, the HFD rats were grouped into HFD + EA group and HFD control group. Rats in the EA group were electro-acupunctured for 4 weeks on Tianshu (ST25) acupoint under gas anesthesia with isoflurane, while the rats in HFD group were under gas anesthesia only. Body weight and cumulative food intake were monitored, and H&amp;E staining was performed to assess adipocyte area. The effect of EA on WAT was assessed by qPCR, immunoblotting, immunoprecipitation and Co-immunoprecipitation. Mitochondria were isolated from IWAT to observe the expression of mitochondrial transcription factor A (TFAM).ResultsThe body weight, WAT/body weight ratio and cumulative food consumption obviously decreased (P &lt; 0.05) in the EA group. The expressions of brown adipose tissue (BAT) markers were increased in the iWAT of EA rats. Nevertheless, the mRNA expressions of WAT genes were suppressed by 4-week EA treatment. Moreover, EA increased the protein expressions of SIRT-1, PPARγ, PGC-1α, UCP1 and PRDM16 which trigger the molecular conversion of iWAT browning. The decrease of PPARγ acetylation was also found in EA group, indicating EA could advance WAT-browning through SIRT-1 dependent PPARγ deacetylation pathway. Besides, we found that EA could activate AMPK to further regulate PGC-1α-TFAM-UCP1 pathway to induce mitochondrial biogenesis.ConclusionIn conclusion, EA can remodel WAT to BAT through inducing SIRT-1 dependent PPARγ deacetylation, and regulating PGC-1α-TFAM-UCP1 pathway to induce mitochondrial biogenesis. This may be one of the mechanisms by which EA affects weight loss.


Sign in / Sign up

Export Citation Format

Share Document