scholarly journals Potato Peels and Mixed Grasses as Raw Materials for Biofuel Production

2020 ◽  
Vol 8 (1) ◽  
pp. 31-37
Author(s):  
Shaaban Z. Omar ◽  
Ayad H. Hasan ◽  
Ivo Lalov

Biogas and fuel ethanol are renewable energy sources, can be produced from complex organic materials that are decomposed by microorganisms in the anaerobic digestion method. Potato peels (PPs) and mixed Lolium perenne and Dactylis glomerata grasses were assessed as a potential substrate for biomethanation in a batch method under mesophilic condition (35°C) and ethanol fermentation. The first approach of this work was focused on pretreatment of PPs using acidic and enzymatic hydrolysis to produce biogas and ethanol fermentation using Saccharomyces cerevisiae and Safbrew S-33. These experiments proved that enzymatic hydrolysis produced 1.2 g/L of ethanol involved 115 h of fermentation and 665 ml/h of biogas after 451 h of biomethanation, this was more than the outcomes of acidic treatment. The second approach was concentrated on ability of biogas and ethanol production from mixed grasses treated with different acid concentrations that produced 0.16 g/L ethanol over 8 days of fermentation and 500 ml/h of biogas after 13 days of methanation technique. In general, the results pointed out that PPs and combined grasses can be used as potential substrates with raw materials for biogas and ethanol production.

Author(s):  
Antônio Luiz Fantinel ◽  
Rogério Margis ◽  
Edson Talamini ◽  
Homero Dewes

Despite the acknowledged relevance of renewable energy sources, biofuel production supported by food-related agriculture has faced severe criticism. One way to minimize the considered negative impacts is the use of sources of non-food biomass or wastes. Synthetic biology (SB) embraces a promising complex of technologies for biofuel production from non-edible and sustainable raw materials. Therefore, it is pertinent to identify the global evolution of investments, concepts, and techniques underlying the field in support of policy formulations for sustainable bioenergy production. We mapped the SB scientific knowledge related to biofuels using software that combines information visualization methods, bibliometrics, and data mining algorithms. The United States and China have been the leading countries in developing SB technologies. Technical University of Denmark and Tsinghua University are the institutions with higher centrality and have played prominent roles besides UC-Los Angeles and Delft University Technology. We identified six knowledge clusters under the terms: versatile sugar dehydrogenase, redox balance principle, sesquiterpene production, Saccharomyces cerevisiae, recombinant xylose-fermenting strain, and Clostridium saccharoperbutylacetonicum N1-4. The emerging trends refer to specific microorganisms, processes, and products. Yarrowia lipolytica, Oleaginous yeast, E. coli, Klebsiella pneumoniae, Phaeodactylum tricornutum, and Microalgae are the most prominent microorganisms, mainly from the year 2016 onwards. Anaerobic digestion, synthetic promoters, and genetic analysis appear as the most relevant platforms of new processes. Improved biofuels, bioethanol, and N-butanol are at the frontier of the development of SB-derived products. Synthetic biology is a dynamic interdisciplinary field in environmentally friendly bioenergy production pushed by growing social concerns and the emergent bioeconomy.


2020 ◽  
Vol 66 (No. 10) ◽  
pp. 469-476
Author(s):  
Katalin Takács-György ◽  
Anett Lászlók ◽  
István Takács

The EU is committed to increasing the use of renewable energy sources. In the sector of transportation, the share of renewable energy is to reach 10% by 2020 and 14% by 2030, respectively, in the EU. According to the latest forecasts, the production of the first-generation biofuels made from food raw materials is showing a declining tendency in the main European producing countries. Therefore, the objective of our research is to forecast the production of some selected biofuel producing countries within the EU as well as the traditional biofuel production in Hungary. The question of land use changes due to the new regulations is crucial. Our examinations were carried out by using Verhulst’s logistic function based on the biofuel production data of EUROSTAT. The function has already reached the saturation level in Germany, France and Sweden but in the case of other examined countries, biofuel production is also in the phase of slowing growth. Furthermore, findings are also justified by the 2015 regulation that restricts the share of producing first-generation biofuels in the final energy consumption to 7% and promotes the production of advanced biofuels, thereby decreasing the indirect change in land use and increasing sustainable crop production.


2020 ◽  
Vol 12 (7) ◽  
pp. 2626 ◽  
Author(s):  
Tamás Mizik

The study gives an overview of raw materials and biofuel generation, markets, production, and regulation. The major aim of this study was to reveal the impacts of biofuel production on international commodity trade. According to the results of the country-level regressions, the export of corn and sugar cane have generally negatively impacted ethanol production. This effect was positive at the global level which indicates that some of the imported raw materials are used for ethanol production. Although the explanatory power of the models was relatively high (from 0.35 (EU) to 0.94 (USA)), none of models proved to be significant, even at the 10% level. These values were higher for the biodiesel models (from 0.53 (USA) to 0.97 (Brazil)) and the EU model results were significant at the 5% level. The export of raw materials had a positive impact on biodiesel production. This implies that some part of the biodiesel was produced from the imported raw materials. The export of processed products (different oils) had a negative impact on biodiesel production, as they are normally used for other purposes.


2018 ◽  
Vol 90 (2) ◽  
pp. 271-284
Author(s):  
Vasudha Kotia ◽  
Rangananthan Vijayaraghavan ◽  
Vidhya Rangaswamy ◽  
Pavankumar Aduri ◽  
Santosh B. Noronha ◽  
...  

Abstract Lignocellulosic biomass is a rich source of cellulose and one of the most promising raw materials for the production of biofuels and other value added chemicals. However, its high lignin content and complex cellular structure represent a significant processing challenge. In this work, the effect of pretreatment using [EMIM][Ac] was studied at various process parameters in order to develop a cost-effective process. In order to minimize the loss of sugars in this process bulk of the solids, comprising both regenerated cellulose and undissolved particles were subjected to the enzymatic hydrolysis. Up to 96% enzymatic digestibility was achieved, even with relatively coarse particle sizes (0.6–1.0 mm range), at 10% biomass loading. The enhanced digestibility of CS is attributed to reduction in lignin content, crystallinity of the cellulose coupled with an increase in surface area.


Author(s):  
S.V. Goncharov ◽  
◽  
V.V. Karpachyov ◽  

The 21st century is entering the era of a leading to the development of environmentally clean and renewable energy sources, decarbonization and a decrease in global consumption of primary energy in the form of hydrocarbons in the European Union, the United States and other countries. A number of countries have a mandatory level of biofuel use, supported by tax incentives and subsidies. The EU Red Standard and the California Low Carbon Fuel Standard are policy initiatives that keep the demand for biofuels growing. In the next decade, the consumption of vegetable oils for biofuel production is projected to grow by 15%. The sowing area of oil crops in the Russian Federation in 2020 amounted to 14.3 million hectares, while 23% of the processing capacities of 25 million tons were not loaded. Turkey, Egypt and Iran will be among the top 5 major importers of Russian oil, along with China and India. Soybean and rapeseed are the main crops for processing into biodiesel. According to forecasts, the export of rapeseed oil may reach 1.1– 1.4 million tons by 2024. Renewable sources of primary energy consumption in Russia should reach 6% in its structure by 2040, which implies the development of alternative energy including the production of raw materials for biodiesel in.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1155 ◽  
Author(s):  
Małgorzata Smuga-Kogut ◽  
Bartosz Walendzik ◽  
Daria Szymanowska-Powalowska ◽  
Joanna Kobus-Cisowska ◽  
Janusz Wojdalski ◽  
...  

Triticale straw constitutes a potential raw material for biofuel production found in Poland in considerable quantities. Thus far, production of bioethanol has been based on food raw materials such as cereal seeds, sugar beets or potatoes, and the biofuel production methods developed for these lignocellulose raw materials can threaten the environment and are inefficient. Therefore, this study aimed to compare of methods for pretreatment of triticale straw using 1-ethyl-3-methylimidazolium acetate and the sulfate method in the aspect of ethanol production intended for fuel. Based on the conducted experiments it has been determined that the use of 1-ethyl-3-methylimidazolium acetate for the pretreatment of triticale straw resulted in an increase of reducing sugars after enzymatic hydrolysis and ethyl alcohol after alcoholic fermentation. Furthermore, the study compared the efficiency of enzymatic hydrolysis of triticale straw without pretreatment, after processing with ionic liquid, recycled ionic liquid and using sulfate method, allowing a comparison of these methods. The more favorable method of lignocellulose material purification was the use of ionic liquid, due to the lower amount of toxic byproducts formed during the process, and the efficiency test results of bioethanol production using pretreatment with ionic liquid and sulfate method were similar. Ionic liquid recycling after pretreatment of rye straw using lyophilization allowed us to reuse this solvent to purify rye straw, yet the efficiency of this method remained at a low level. As a result of the conducted study it was determined that the use of ionic liquid-1-ethyl-3-methylimidazolium acetate enhanced the yield of bioethanol from triticale straw from 1.60 g/dm3 after processing without pre-treatment to 10.64 g/dm3 after pre-treatment.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1588
Author(s):  
Sanja Potrč ◽  
Lidija Čuček ◽  
Mariano Martin ◽  
Zdravko Kravanja

Increasing the use of renewable energy sources is one of the most important goals of energy policies in several countries to build a sustainable energy future. This contribution proposes the synthesis of a biorefinery supply network for a case study of the European Union (EU-27) under several scenarios based on a mathematical programming approach. Several biomass and waste sources, such as grains, waste oils, and lignocellulosics, are proposed to be utilized, and various biofuels including first, second, and third generations are produced such as bioethanol, green gasoline, biodiesel, Fischer Tropsch (FT) diesel, and hydrogen. The aim of this study is to evaluate the capabilities of EU-27 countries to be able to meet the Renewable Energy Directive (RED II) target regarding the share of renewable energy in the transport sector by 2030 in each Member State while not compromising the current production of food. A generic mathematical model has been developed for the multi-period optimization of a biorefinery supply network with the objective of maximizing sustainability profit. The solutions obtained show that biomass and waste are promising raw materials to reach and go beyond the EU’s renewable energy target in the transport sector for the year 2030. However, some countries would need to provide additional subsidies for their companies to achieve at least a non-negative economic performance of biofuel production.


Author(s):  
N. I. Chernova ◽  
S. V. Kiseleva ◽  
O. M. Larina ◽  
G. A. Sytchev

Algae biomass is considered as an alternative raw material for the production of biofuels. The search for new types of raw materials, including high-energy types of microalgae, remains relevant, since the share of motor fuels in the structure of the global fuel and energy balance remains consistently high (about 35%), and the price of oil is characterized by high volatility. The authors have considered the advantages of microalgae as sources of raw materials for fuel production. Biochemical and thermochemical conversion are proposed as technologies for their processing. This paper presents the results of the study of the pyrolysis of the biomass of clonal culture of blue-green microalgae / cyanobacteriumArthrospira platensis rsemsu 1/02-Pfrom the collection of the Research Laboratory of Renewable Energy Sources of the Lomonosov Moscow State University. An experiment to study the process of pyrolysis of microalgae biomass was carried out at the experimental facility of the Institute of High Temperatures RAS in pure nitrogen grade 6.0 to create an oxygen-free environment with a linear heating rate of 10 ºС / min from room temperature to 1000 ºС. The whole process of pyrolysis proceeded in the field of endothermy. The specific amounts of solid residue, pyrolysis liquid and gaseous products were experimentally determined. As a result of the pyrolysis of microalgae biomass weighing 15 g, the following products were obtained: 1) coal has the mass of the solid residue is 2.68 g, or 17.7% of the initial mass of the microalgae (while 9.3% of the initial mass of the microalgae remained in the reactor); 2) pyrolysis liquid – weight 3.3 g, or 21.9% of the initial weight; 3) non-condensable pyrolysis gases – weight 1.15 l. The specific volumetric gas yield (the amount of gas released from 1 kg of the starting material) was 0.076 Nm3/ kg. The analysis of the composition and specific volume yield of non-condensable pyrolysis gases formed in the process of pyrolysis, depending on temperature. It is shown that with increasing temperature, the proportion of highcalorie components of the gas mixture (hydrogen, methane and carbon monoxide) increases. The calorific value of the mixture of these gases has been estimated.


2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


Sign in / Sign up

Export Citation Format

Share Document