New Developments in the Formation of Nanocomposites between Starch and Clay

2021 ◽  
Vol 19 (11) ◽  
pp. 40-46
Author(s):  
Manar Ghyath Abd-Almutalib Al-Mosawy ◽  
Zeyad Kadhim Oleiwi

Biodegradable polymers, like Polycaprolactone (PCL), have recently received a lot of attention in the science establishment because of the growing global interest in non - petroleum-based polymeric materials. 3-amino - 4 - ((3-hydroxyphenyl) diazenyl) - N(pyrimidine-2-yl) benzenesulfonamide (AZO) one of the organic materials used to reconfigure natural clay (sodium montmorillonite). The clay particles were modified by stirring them in an aqueous medium of AZO-MMT, which increased the wavelength from 1.27 to 2.04 nm. The reconfigured clay would have been used to make PCL/corn-starch mixture nanocomposites. They were created by combining 0.5–5% AZO-MMT. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) were utilized to characterize the interaction of the modifier in the clay layer. The nanocomposites were prepared by solution casting method the reconfigured clay and a PCL/corn-starch mixture at a weight ratio of 80/20, which leads to an increase in the scope of tensile strength which that considers the biggest blend. The results of survey electron microscopy, transmission electron microscopy, and XRD was proved the creation of nanocomposites materials. Additionally, that PBS/corn-starch reconfigured clay nanocomposites exhibit that superior thermal stability significantly and a great increase over the PCL/corn-starch mixture.

Author(s):  
Manar Ghyath Abd-Almutalib Al-Mosawy

Background: Polybutylene succinate (PBS) is a type of biodegradable polymers that have gained considerable attention among scholars when extreme rivalry is increasing rapidly in around the world for finding alternatives to petroleum-based polymeric materials. Methods: A modified clay was used in preparing nanocomposites for the PBS / corn starch mixture. Nanocomposites were prepared by 0.5–5 percent of HDA-MMT being integrated.An x-ray diffraction technique (XRD) was employed to characterize the modifier’s interactionin the clay layer. Results: In order to the nanocomposites to be synthesized, a solution was used to cast off the modified clay and (PBS)/ corn starch) blend. The nanocomposites production was verified by XRD and transmission electron microscopy. Conclusion: Modified clay nanocomposites (PBS / Corn starch) demonstrate higher thermal stability and substantial improvement in contrast to PBS / Corn starch blend.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3505 ◽  
Author(s):  
Feng Mao ◽  
Shizhong Wei ◽  
Liming Ou ◽  
Cheng Zhang ◽  
Chong Chen ◽  
...  

The effect of alloying the Eu element on primary Si refinement in varied purity Al–16Si alloys was studied by scanning electron microscopy (SEM), thermal analysis, micro x–ray diffraction (μ–XRD), electron probe microanalysis (EPMA), and transmission electron microscopy (TEM). The results indicate that the P impurity element in hypereutectic Al–Si alloys has a great influence on the rare earths’ refinement efficiency of primary Si. Coinstantaneous primary Si refinement and eutectic Si modification by Eu was obtained in high purity (HP) Al–16Si and commercial purity (CP) Al–16Si–0.06P alloys, but the primary Si was gradually coarsened in CP Al–16Si alloys. An excellent integration of ultimate tensile strength (144.8 MPa) and elongation (9.8%) of CP hypereutectic Al–16Si–0.06P alloy was obtained by adding 0.15% Eu. The refinement of primary Si in Eu–modified HP Al–16Si alloys was related to the constitutional undercooling of Eu. There was no sufficient Eu element partition into the primary Si particles, and fewer parallel twins, rather than multiple twins, were observed within them. The refinement of primary Si in CP Al–16Si–0.06P alloys was caused by the overlay of two kinds of mechanisms including the heterogeneous nucleation mechanism of AlP and the constitutional supercooling mechanism of Eu. However, in order to refine the primary Si in CP hypereutectic Al–16Si alloys, the Eu:P weight ratio should not exceed 3.33, otherwise the refinement efficiency of primary Si will be reduced due to mutual poisoning between Eu and P. This work can be used to interpret the controversy concerning the influence of rare earths on the primary Si in hypereutectic Al–Si alloys, thereby elucidating the importance of alloy purity to primary Si refinement by rare earths.


2011 ◽  
Vol 13 ◽  
pp. 1-5 ◽  
Author(s):  
Ali Shokuhfar ◽  
Omid Ozhdelnia ◽  
Ali Mostaed ◽  
Ehsan Mostaed

In this work, the preparation of nanostructured Al-4.5wt%Mg powder through the mechanical alloying (MA) process was evaluated. The X-ray diffraction (XRD) technique was used to calculate the crystallite size and microstrain. Scanning electron microscopy (SEM) was used not only to study the morphology of the powders but also to show the fact that the Mg powders were distributed during the MA process. Transmission electron microscopy (TEM) was also used to demonstrate whether the produced powders are nanostructured or not. XRD results showed that microstrain and crystallite size of milled powder (after 10 h milling at the ball-to-powder weight ratio (BPR) of 20:1) were ≈-0.34% and ≈20nm respectively. XRD and TEM results showed that Al12Mg17has been formed during MA process. This means that during this process, mutual diffusion of Al and Mg has occurred.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


Author(s):  
R H Dixon ◽  
P Kidd ◽  
P J Goodhew

Thick relaxed InGaAs layers grown epitaxially on GaAs are potentially useful substrates for growing high indium percentage strained layers. It is important that these relaxed layers are defect free and have a good surface morphology for the subsequent growth of device structures.3μm relaxed layers of InxGa1-xAs were grown on semi - insulating GaAs substrates by Molecular Beam Epitaxy (MBE), where the indium composition ranged from x=0.1 to 1.0. The interface, bulk and surface of the layers have been examined in planar view and cross-section by Transmission Electron Microscopy (TEM). The surface morphologies have been characterised by Scanning Electron Microscopy (SEM), and the bulk lattice perfection of the layers assessed using Double Crystal X-ray Diffraction (DCXRD).The surface morphology has been found to correlate with the growth conditions, with the type of defects grown-in to the layer (e.g. stacking faults, microtwins), and with the nature and density of dislocations in the interface.


2020 ◽  
Vol 14 (2) ◽  
pp. 6801-6810
Author(s):  
Rahmayeni Rahmayeni ◽  
Zulhadjri Zulhadjri ◽  
Yeni Stiadi ◽  
Agusnar Harry ◽  
Syukri Arief

Nanocomposite ZnO/ZnFe2O4 photocatalysts with different proportions of ZnFe2O4 were synthesized in organic-free media using metal nitric as precursors. The ZnO phase with hexagonal wurtzite structure and low crystallinity of ZnFe2O4 was confirmed using XRD (X-Ray diffraction). Different morphologies of the nanocomposites were obtained ranging from rice grain-like with a porous surface to homogeneous sphere-like nanoparticles as shown in Scanning Electron Microscopy (SEM) and TEM Transmission Electron Microscopy (TEM) studies. Magnetic properties measured by Visible Sampler Magnetometer (VSM) showed diamagnetic and paramagnetic behavior for the nanocomposites. Analysis with Diffuse Reflectance Spectrophotometer (DRS) UV-vis showed an increase the composition of ferrite in composites increasing its ability to absorb visible light. Photocatalytic activities of ZnO/ZnFe2O4 nanocomposites on the degradation of Rhodamine B dye reached 95.6% after 3 h under natural sunlight suggesting their suitability for sunlight driven photocatalytic applications. 


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


Sign in / Sign up

Export Citation Format

Share Document