scholarly journals Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine

2012 ◽  
Vol 1 (3) ◽  
pp. 115 ◽  
Author(s):  
N Shrivastava ◽  
S.N Varma ◽  
M Pandey

Fast depletion of fossil fuel resources forces the extensive research on the alternative fuels. Vegetable oils edible or non edible can be a better substitute for the petroleum diesel. Karanja, a non edible oil can be a potential source to replace the diesel fuel. To investigate the feasibility of Karanja oil as an alternative diesel fuel, its biodiesel was prepared through the transesterification process. The Biodiesel was then subjected to performance and emission tests in order to assess its actual performance, when used as a diesel engine fuel. The data generated for the 20, 50 and 100 percent blended biodiesel were compared with base line data generated for neat diesel fuel. Result showed that the Biodiesel and its blend showed lower thermal efficiency. Emission of Carbon monoxide, unburned Hydrocarbon and smoke was found to be reduced where as oxides of nitrogen was higher with biodiesel and its blends. Keywords: alternate Diesel fuel; Biodiesel; Karanja oil methyl ester; performance and emission

Author(s):  
Ashutosh Kumar Rai ◽  
Bhupendra Singh Chauhan ◽  
Haeng Muk Cho ◽  
Naveen Kumar

To meet the challenges of increased energy need and concerned about environmental friendly, renewable fuels are being explored in the current energy scenario. In the present study non edible Linseed oil was used as alternative source for diesel engine fuel. The physico-chemical properties were evaluated and compared with mineral Diesel and found in close resemblance. The fuel was tested by using performance and emission parameters on an unmodified single cylinder diesel engine. The study was done by using diesel & Diesel-linseed oil blends at various loads from no load to 100% loads with interval of 20%. The linseed fuel was blended into 5%, 10%, 15% and 20% v/v ratio with neat diesel and compared with baseline data of neat diesel operation. Performance parameters such as brake thermal efficiency and brake specific fuel consumptions were studied and emission parameters such as CO (carbon mono oxide), UBHC (unburned hydrocarbon), NOx (oxides of nitrogen), CO2 (carbon di oxide), exhaust temperature were measured. The thermal efficiency of the engine was lower and the brake specific energy consumption of the engine was higher when the engine was fueled with Linseed oil-Diesel blends compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formations, using various fuel blends during the whole range of experiment were lower than diesel fuel. The results from the experimental study suggest that the linseed oil could be a potential substitute for diesel engine in the near future as far as small and medium energy productions are concerned.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


Biofuels derived from vegetable oils are known to be promising alternative fuels for diesel engines. The possibility of using mixtures of petroleum diesel fuel with rapeseed oil and rapeseed oil methyl ester as environmentally friendly motor fuels is considered. The practicability of changing the composition of these mixtures in accordance with the engine operating mode is shown. A technique for multicriteria optimization of the composition of such mixed biofuels is suggested. The basic characteristics of the optimal composition of these mixed biofuels are calculated. A device for regulating fuel’s composition is proposed. The basic characteristic of regulation of the blended biofuel composition realized by the device is presented. Keywords diesel engine; combustion chamber; oil diesel fuel; rapeseed oil; rapeseed oil methyl ester; biofuel mixture; ecological characteristics; exhaust gases toxicity


2013 ◽  
Vol 768 ◽  
pp. 218-225 ◽  
Author(s):  
M. Parthasarathy ◽  
J. Isaac Joshua Ramesh Lalvani ◽  
B. Parthiban ◽  
K. Annamalai

Random extraction and consumption of fossil fuels have leads to a reduction in petroleum reserves. As for as developing countries like India is connected the need to search for alternative fuels is most urgent as India is heavily dependent upon the import of petroleum to meet its demands for automotive and power sectors. This has inspired curiously in alternative sources for petroleum based fuels. An alternative fuel must be economically competitive and environmentally acceptable. India has great potential for production of biofuels like Biodiesel from vegetable seeds. In the quest to find an alternative to the existing diesel and petrol fuels various Biodiesel and alcohol has been tried and tested in the Internal Compression engine. In this direction, an attempt has been made to investigate the performance and emission characteristic of Biodiesels and compare it with diesel. The Biodiesels considered are Tamanu, Mahua and Pongamia were tested with four stroke diesel engine. A drastic improvement in reduction of Hydrocarbon (HC) and Carbon monoxide (CO) were found for Biodiesels at high engine loads. Smoke and Nitrogen oxides (NOx) were slightly higher for Biodiesels. Biodiesels exposed similar combustion stages to diesel fuel. Therefore use of transesterified vegetable oils can be partially substituted for the diesel fuel at most operating conditions in term of the performance parameters and emissions without any engine modification.


Author(s):  
Yaodong Wang ◽  
Neil Hewitt ◽  
Philip Eames ◽  
Shengchuo Zeng ◽  
Jincheng Huang ◽  
...  

Experimental tests have been carried out to evaluate the performance and emissions characteristics of a diesel engine when fuelled by blends of 25% vegetable oil with 75% diesel fuel, 50% vegetable oil with 50% diesel fuel, 75% vegetable oil with 25% diesel fuel, and 100% vegetable oil, compared with the performance, emissions characteristics of 100% diesel fuel. The series of tests were conducted and repeated six times using each of the test fuels. 100% of ordinary diesel fuel was also used for comparison purposes. The engine worked at a fixed speed of 1500 r/min, but at different loads respectively, i.e. 0%, 25%, 50%, 75% and 100% of the engine load. The performance and the emission characteristics of exhaust gases of the engine were compared and analyzed. The experimental results showed that the carbon monoxide (CO) emission from the vegetable oil and vegetable oil/diesel fuel blends were nearly all higher than that from pure diesel fuel at the engine 0% load to 75% load. Only at the 100% engine load point, the CO emission of vegetable oil and vegetable oil/diesel fuel blends was lower than that of diesel fuel. The hydrocarbon (HC) emission of vegetable oil and vegetable/diesel fuel blends were lower than that of diesel fuel, except that 50% of vegetable oil and 50% diesel fuel blend was a little higher than that of diesel fuel. The oxides of nitrogen (NOx) emission of vegetable oil and vegetable oil/diesel fuel blends, at the range of tests, were lower than that of diesel fuel.


2021 ◽  
Author(s):  
Bhabani Prasanna Pattanaik ◽  
JIBITESH KUMAR PANDA ◽  
Santhosh Kumar Gugulothu ◽  
Pradeep Kumar Jena

Abstract The present work studies the influence of di-tertiary-butyl peroxide (DTBP) as a cetane-improving additive to karanja methyl ester (KME) on the combustion, performance and emission characteristics of a diesel engine. KME produced by base catalyzed transesterification of non-edible karanja oil was blended with DTBP in different volume proportions to result KMED1 (99% KME + 1% DTBP), KMED2 (98% KME + 2% DTBP), KMED3 (97% KME + 3% DTBP) and KMED5 (95% KME + 5% DTBP) fuel blends. With increase in DTBP content, viscosity was reduced, whereas the cold flow properties, cetane index and calorific value were enhanced. Engine test results exhibited improvement in brake thermal efficiency and brake specific energy consumption for all blends compared to neat KME. Combustion analysis showed improved combustion with rise in DTBP content in the blends. The CO, HC and NOx emissions with KME-DTBP blends were less compared to neat KME and the same significantly reduced with rise in DTBP percentage in the blends. This shows improved combustion due to more oxygen availability and improvement in fuel properties with addition of DTBP to KME. However, the NOx emissions were marginally higher with KME-DTBP blends compared to neat KME and diesel that may be further studied.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7903
Author(s):  
István Péter Kondor ◽  
Máté Zöldy ◽  
Dénes Mihály

Due to the world’s growing population, the size of areas intended for food production in many countries of the world can only be achieved through severe environmental damage and deforestation, which has many other detrimental consequences in addition to accelerating global warming. By replacing the bio-content of fuels with other alternative fuels, land that is used for energy crops can also be used to grow food, thus mitigating the damaging effects of deforestation. Waste-based tire pyrolysis oil (TPO) can be a promising solution to replace the bio-proportion of diesel fuel. Since it is made from waste tires, it is also an optimal solution for recycling waste. This research shows the effect of different low-volume-percent tire pyrolyzed oil blended with diesel on the performance, fuel consumption, and emissions on a Mitsubishi S4S-DT industrial diesel engine. Four different premixed ratios of TPO were investigated (2.5%, 5%, 7.5% and 10%) as well as pyrolysis oil and 100% diesel oil; however, the following studies will only include the data from the pure diesel and the 10% TPO measurements. The experimental investigations were in an AVL electric dynamometer, the soot measurements were in an AVL (Anstalt für Verbrennungskraftmaschinen List) Micro soot sensor (MSS), and the emission measurements were in a AVL Furier-transform infrared spectroscopy (FTIR) taken. The scope of research was to investigate the effect of low volume percentage TPO on performance and emissions on a light-duty diesel engine.


Mechanika ◽  
2019 ◽  
Vol 25 (5) ◽  
pp. 413-418
Author(s):  
Gopinath Varudharajan

In the present work on unheated Corn oil methyl ester and Preheated Corn oil methyl ester is used to prepare different concentration blends with diesel, B20, B40 and B60 were used as alternative fuels in a compression ignition engine. The properties like calorific value, flash point, fire point and viscosity of these oils were determined. The viscosity of corn oils has been reduced through transterification process. The waste heat energy from the exhaust gas was reused to preheat the corn oil around 80°C by adjusting the flow rate of exhaust gas.  The performance and emission characteristics of a single cylinder, direct injection diesel engine were determined using unheated corn oil, Preheated Corn oil and diesel. Brake thermal efficiency of preheated B20 was more than other blends and unheated fuels but equal to diesel fuel. Brake specific fuel consumption, CO2 and HC of preheated B20 were less than unheated fuels and diesel. However, the NOx emission of preheated B20 was little higher than unheated fuels and diesel due to high combustion temperature. By considering the result of all the factors, preheated B20 blend was found to be a suitable alternative for diesel fuel.


Author(s):  
Biplab K. Debnath ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Palm oil methyl ester (POME) produced from crude palm oil have some excellent properties which makes it a feasible alternative to diesel fuel. However, its higher oxygen content makes it nitrogen oxide emission prone when burned in diesel engines. This problem can be resolved by emulsifying POME with distilled water in the presence of suitable surfactant. Two phase water in oil emulsion is prepared by using ultrasonic bath sonication. SPAN 80, a lipophilic surfactant is used for 1% by volume to prepare the emulsion. Water quantity in the emulsion is varied by 5% and 10% by volume and stability study is performed. It is found that emulsion with 5% water is more stable. Thereafter, POME emulsion samples are prepared with 5% water and tested in a variable compression ratio diesel engine. The performance and emission characteristics are investigated for a set of loads and compression ratios (CR). The experimental observations show that 5% water in POME produce 3.5% lower brake thermal efficiency and 11% higher brake specific fuel consumption as compared to baseline diesel. Furthermore, the exhaust gas temperature and other emissions like oxides of carbon, oxides of nitrogen and hydrocarbon for the emulsified POME are found to be lower than the baseline diesel.


Sign in / Sign up

Export Citation Format

Share Document