scholarly journals The Identification of Carotenoids and Testing of Carotenoid Antioxidants from Sand Lobster (Panulirus homarus) Egg Extract

2017 ◽  
Vol 22 (3) ◽  
pp. 155
Author(s):  
James Ngginak ◽  
Jubhar C Mangibulude ◽  
Ferdy S Rondonuwu

Sand lobsters (Panulirus homarus) are organisms that play an important role in supporting a society’s economy. Lobsters have a business appeal due to their high demand, enjoyable taste, as well as significant nutritional content. It is interesting that sand lobster eggs have a yellow orange color as an indicator of the presence of carotenoid content. Related with advancements in research and the utilization of carotenoids, this research identifies carotenoids and tests carotenoid antioxidants from sand lobster (Panulirus homarus) egg extract. In identifying carotenoids in sand lobster egg extract, HPLC (high performance liquid chromatography) (shimadzu LC-10AD, Japan) is used. In testing carotenoid antioxidants from sand lobster eggs, a DPPH method is utilized. The identification results with HPLC reveal that the sample contains carotenoids. The kinds of carotenoids identified are dinoxanthin, diadinoxanthin, zeaxanthin, lutein, astaxanthin, and violaxanthin. Among the six kinds of carotenoids identified, lutein is the type of carotenoid that has the highest concentration. These carotenoid compounds are detected in wavelengths of 400-500 nm. The test results of antioxidant power reveal that to hamper free radicals (IC50), a sample concentration of 6675.25 µg.ml-1 is needed. The ability to hinder free radicals from a sample extract is mostly conducted by lutein, zeaxanthin, and astaxantin. If seen from the analytical results, it can be surmised that sand lobster eggs contain carotenoids that can be used as a carotenoid source for humans.   Keywords : Sand Lobster, HPLC, Carotenoids, DPPH, Antioxidant

Author(s):  
Irda Fidrianny ◽  
Siti Kusmardiyani ◽  
Grace Novita

<p>ABSTRACT<br />Objectives: The aims of this research were to determine antioxidant activity from various extracts of different parts of kelakai (Stenochlaena palustris<br />[Burm.f.] Bedd) using two antioxidant testing methods, which were 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power<br />(FRAP), and correlation of total phenolic contents (TPC), total flavonoid contents (TFC), and total carotenoid contents (TCC) with their inhibitory<br />concentration 50% (IC<br />50<br />) of DPPH and exhibitory concentration 50% (EC<br />50<br />) of FRAP.<br />Methods: Sample was extracted by reflux using different polarity solvents. The extracts were evaporated using vacuum rotary evaporator. Antioxidant<br />activities were tested using DPPH and FRAP assays, determination of TPC, TFC, and TCC was carried out by ultraviolet-visible spectrophotometry, and<br />correlation with their IC<br />50<br /> of DPPH and EC<br />50<br /> of FRAP capacities was analyzed by Pearson’s method.<br />Results: Ethanolic root extract of kelakai (S. palustris) had the lowest IC<br />50<br /> of DPPH scavenging activity 0.8 µg/ml and the lowest EC<br /> of FRAP capacity<br />5.4 µg/ml. Ethanolic kelakai root extract demonstrated the highest phenolic content, ethyl acetate young leaves extract had the highest flavonoid<br />content, and the highest carotenoid content was given by n-hexane root extract. There was significantly negative correlation between TPC in root<br />extract of kelakai with their IC<br />50<br /> of DPPH and EC<br />50<br /> of FRAP.<br />Conclusions: All different extracts of kelakai parts were categorized as very strong antioxidants by DPPH method. Phenolic compounds in kelakai<br />root extract were the major contributor in antioxidant activities by DPPH and FRAP methods. DPPH and FRAP showed linear results in antioxidant<br />activities of root kelakai extract.<br />Keywords: Antioxidant, 2,2-diphenyl-1-picrylhydrazyl, Ferric reducing antioxidant power, Stenochlaena palustris, Young leaves, Old leaves, Root.<br />50</p>


2020 ◽  
Vol 3 (2) ◽  
pp. 106
Author(s):  
Muhammad Ainul Yahya ◽  
Iif Hanifa Nurrosyidah

Unhealthy lifestyles and air pollution cause the number of free radicals in the body to increase. To protect the body from free radicals, there are antioxidant compounds as an antidote and stabilize free radicals. One of the Indonesian plants that can be used as antioxidants is gotu kola (Centella asiatica (L.) Urban. Objective: This study aims to determine the antioxidant activity of the ethanol extract of gotu kola herb using the DPPH (2,2-Diphenyl-1-pikrilhidrazil) method. with IC50 value. Method: Gotu kola (Centella asiatica (L.) Urban) was extracted by the soxhletation method using 96% ethanol solvent. The testing of antioxidant activity was carried out using the DPPH (2.2 Diphenyl-1-Pikrihydrazil) method. Result: Test results of antioxidant activity The ethanol extract of gotu kola herb showed an IC50 value of 78.20 ppm. Conclusion: This indicated that the ethanol extract of gotu kola herb was included in the criteria for strong antioxidants. 


2019 ◽  
Vol 7 (2) ◽  
pp. 121
Author(s):  
Anisa ET Silaa ◽  
Darus SJ Paransa ◽  
Anton P Rumengan ◽  
Kurniati Kemer ◽  
Natalie DC Rumampuk ◽  
...  

Grapsus sp crab has a greenish black body color and also known as stone crab. Crabs in the genus Grapsus sp have a swift movement, long legs, they do not have swimming legs and have small reddish purple or purple-orange color, claws on the body of this crab indicated the presence of pigments such as carotenoid pigments. Carotenoid pigments are one form of secondary metabolites which consist of carotene and xanthophyll groups. Carotenoid pigments are present in yellow, orange or orange red which are also found in crabs. Separation of carotenoid pigments can be done using the TLC method, High Performance Liquid Chromatography (HPLC) and Column Chromatography (CC). The purpose of this study was to determine the type of carotenoid pigment from male Grapsus sp crab extract using the Column Chromatography separation method. From the results of this study, the carotenoid pigment content in the 1,2 and 3 carapace was 46,85 μg, 39 µg, and 33,14 µg. The carotenoid pigment concentrations in carapace extracts 1,2 and 3 are 25,38 µg/g, 23,4 µg/g and 5,11 µg/g. From the results of the separation using the column chromatography method, the type of carotenoid pigment identified from the carapace extract of Grapsus sp male is β-Carotene, Ekinenon, Astaxantine, Kantaxantine and Astacen.Keywords: Grapsus sp, Carotenoid, Column ChromatographyKepiting Grapsus sp memiliki warna tubuh hitam kehijauan dan dikenal dengan nama kepiting batu. Kepiting dalam genus Grapsus sp memiliki gerakkan yang cekatan, mempunyai kaki yang panjang, tidak memiliki kaki renang dan memiliki capit berukuran kecil yang berwarna ungu kemerahan atau ungu-oranye warna pada tubuh kepiting ini mengindikasikan adanya kandungan pigmen seperti pigmen karotenoid. Pigmen karotenoid merupakan salah satu bentuk metabolit sekunder yang yang terdiri dari golongan karoten dan xantofil. Pigmen karotenoid  hadir dalam warna kuning, oranye, atau merah oranye, yang juga ditemukan pada kepiting. Pemisahan pigmen karotenoid dapat dilakukan dengan menggunakan metode KLT, Kromatografi Cair Kinerja Tinggi (KCKT) dan Kromatografi Kolom (KK). Tujuan dari penelitian ini adalah untuk mengetahui jenis pigmen karotenoid dari ekstrak kepiting Grapsus sp Jantan dengan menggunakan metode pemisahan Kromatografi Kolom. Dari hasil penelitian ini, didapatkan kandungan pigmen karotenoid pada karapas 1,2 dan 3 adalah 46,85 µg 39 µg, dan 33,14 µg. Konsentrasi pigmen karotenoid pada ekstrak karapas 1,2 dan 3 adalah 25,38 µg/g, 23,4 µg/g dan 5,11 µg/g. Hasil pemisahan menggunakan metode pemisahan kromatografi kolom didapatkan ekstrak karapas kepiting Grapsus sp jantan memiliki jenis pigmen β-Karoten, Ekinenon, Astaxantin, Kantaxantin dan Astasen.Kata kunci: Grapsus sp, Karotenoid, Kromatografi Kolom, 


Author(s):  
Noorma Rosita ◽  
Dewi Haryadi ◽  
Tristiana Erawati ◽  
Rossa Nanda ◽  
Widji Soeratri

The aim of this study was to investigate the ability of NLC in increasing photostability of tomato extract in term of antioxidant activity. Photostability testing on antioxidant activity of samples were conducted by accelerating method using UVB radiation 32.400 joule for 21 hours radiation. Antioxidant activity was measured by DPPH method. NLC was made by High Shear Homogenization (HPH) method at 24000 rpm for 4 cycles, while conventional creame was made by low speed at 400 rpm. The product were characterized include: pH, viscosity, and particle size. There were had difference characters and physical stability. NLC had smaller size, more homogenous and more stable than conventional creame. It was known that stability of antioxidant activity of tomato extract in NLC system higher than in conventional creame. That was showed with k value, as constanta of rate scavenging activity decreasing in antioxidant power between time (Sigma 2-tail less than 0.005) of NLC and conventional creame were: 2.03x10-2 %/hour ±0.08 (3.94) and 4.71x 10-2 %/ hour ±0.23 (4.88) respectively.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 843
Author(s):  
Tamara Ortiz ◽  
Federico Argüelles-Arias ◽  
Belén Begines ◽  
Josefa-María García-Montes ◽  
Alejandra Pereira ◽  
...  

The best conservation method for native Chilean berries has been investigated in combination with an implemented large-scale extract of maqui berry, rich in total polyphenols and anthocyanin to be tested in intestinal epithelial and immune cells. The methanolic extract was obtained from lyophilized and analyzed maqui berries using Folin–Ciocalteu to quantify the total polyphenol content, as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) to measure the antioxidant capacity. Determination of maqui’s anthocyanins profile was performed by ultra-high-performance liquid chromatography (UHPLC-MS/MS). Viability, cytotoxicity, and percent oxidation in epithelial colon cells (HT-29) and macrophages cells (RAW 264.7) were evaluated. In conclusion, preservation studies confirmed that the maqui properties and composition in fresh or frozen conditions are preserved and a more efficient and convenient extraction methodology was achieved. In vitro studies of epithelial cells have shown that this extract has a powerful antioxidant strength exhibiting a dose-dependent behavior. When lipopolysaccharide (LPS)-macrophages were activated, noncytotoxic effects were observed, and a relationship between oxidative stress and inflammation response was demonstrated. The maqui extract along with 5-aminosalicylic acid (5-ASA) have a synergistic effect. All of the compiled data pointed out to the use of this extract as a potential nutraceutical agent with physiological benefits for the treatment of inflammatory bowel disease (IBD).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Perylenes and perinones are separate groups of pigments categorized within the carbonyl chemical class. The two pigment groups show similarities, for example, in their chemical structural features and, to an extent, in their technical and application properties as high-performance organic pigments. Perylenes constitute a series of firmly established high-performance pigments, offering red and violet colors, and also extending to black. Synthetically, they are derived from perylene-1,4,5,8-tetracarboxylic acid. The perylenes tend to be quite expensive pigments, but their high levels of fastness properties mean that they are suitable for highly demanding applications. In particular, they offer very high heat stability. Two perinone pigments are used commercially. In their synthesis from naphthalene-1,4,5,8-tetracarboxylic acid, they are formed as mixtures of the two isomers, which can be separated. The trans isomer, CI Pigment Orange 43, is a highly important commercial pigment, especially for plastics, while the cis isomer, CI Pigment Red 194, is bordeaux in color and is of much lesser importance. The perinone, CI Pigment Orange 43, provides a brilliant orange color and has very good fastness properties. Its commercial manufacture involves a challenging multistage procedure and consequently it is one of the most expensive organic pigments on the market.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 910
Author(s):  
María I. Sáez ◽  
María D. Suárez ◽  
Francisco J. Alarcón ◽  
Tomás F. Martínez

This study evaluates the potential of different algae extracts (Crassiphycus corneus, Cc; Ulva ohnoi, Uo; Arthrospira platensis, Ap; Haematococcus pluvialis, Hp) as additives for the preservation of rainbow trout fillets. The extracts were prepared with different water to ethanol ratios from the four algae species. The highest ferric reducing antioxidant power (FRAP) was observed in Uo extracted in 80% ethanol. Ap aqueous extract also had considerable FRAP activity, in agreement with a high total phenolic content. Radical scavenging activity (DPPH) was higher in Cc 80% ethanol extract, in agreement with a high total carotenoid content. In fact, when the algae aqueous extracts were assayed on the fish fillets, their antioxidant activity exceeded that of ascorbic acid (ASC). All algae extracts delayed microbial growth and lipid oxidation processes in trout fillets throughout the cold storage period compared to controls, and also improved textural parameters, these effects being more evident for Ap and Hp. With respect to the color parameters, the Hp extract prevented the a* values (redness) from decreasing throughout cold storage, a key point when it comes to colored species, not least salmonids. On the other hand, the Ap extract was not as effective as the rest of treatments in avoiding a* and b* decrease throughout the storage period, and thereby the color parameters were impaired. The results obtained, together with the natural origin and the viability for large-scale cultivation, make algae extracts interesting fish preservative agents for the food industry.


2018 ◽  
Vol 10 (1) ◽  
pp. 407
Author(s):  
Dewi Kumala Putri ◽  
Berna Elya ◽  
Nuraini Puspitasari

Objective: To assess the antioxidant activity from another part of the plant, in this study, leaf extracts in n-hexane were fractionated.Methods: Ten fractions were obtained and tested in vitro for antioxidant activity using two methods, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferricreducing antioxidant power (FRAP), to identify the most active fraction.Results: The IC50 of the most active fraction was 36.24 μg/mL using the DPPH method, and the EC50 was 39.54 μg/mL using the FRAP method. Themost active fraction was also shown to contain terpenoids.Conclusion: The most active fraction of an n-hexane extract of the leaves of Gacinia bancana Miq., which was tested by both DPPH and FRAP methodshad antioxidant activities with IC50 and EC50 values of 36.2482 μg/mL and 39.5442 μg/mL, respectively. Phytochemical screening showed that activefraction contains terpenoids.


Sign in / Sign up

Export Citation Format

Share Document